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Background: (Traditional) RDMA
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RDMA: One-Sided READ and WRITEs

● Works well with distributed systems, such as datacenters
● One-sided reads and writes provide latency and op-rate benefits
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RDMA Challenge #1: Problems from Connections (cont.)

● Connection sharing: independent workloads multiplexed on same connection
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RDMA Challenge #1: Problems from Connections (cont.)
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RDMA Challenge #1: Problems from Connections (cont.)

● Connection sharing: independent workloads multiplexed on same connection
○ Leads to induced ordering: required FIFO execution of same-type ops 

within a single connection
● Problems

○ If one op fails, all others in same connection will fail, often unnecessarily
○ RNIC in-hardware order recovery makes complexity worse 
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RDMA Challenge #2: Connection-centric Security

● Access control tied to connections
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RDMA Challenge #2: Connection-centric Security (cont.)

● Encryption key rotated
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RDMA Challenge #2: Connection-centric Security (cont.)

● Encryption key rotated => new key being used 
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RDMA Challenge #2: Connection-centric Security (cont.)

● Encryption key rotated => new key being used => temporary connection 
teardown due to authentication failure while connection is set up again
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RDMA Challenge #3: Rigid Congestion Control & Loss 
Recovery

● Priority flow control (PFC) is needed to provide a near lossless network
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RDMA Challenge #3: Rigid Congestion Control & Loss 
Recovery

● Priority flow control (PFC) is needed to provide a near lossless network
● PFC doesn't work in commercial datacenters

○ Head-of-line blocking, poor at-scale failure isolation, and risk of deadlock
● Solutions that reduce reliance on PFC bake congestion response and loss 

recovery into hardware
○ Problem: Can't update congestion control algorithms post-deployment
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RDMA Challenges: Root Causes

● RDMA ill suited to multi-tenancy because of its two basic design attributes
○ (1) Connection orientedness
○ (2) Complex policies baked into hardware (inflexible)
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Solution: 1RMA
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RDMA vs. 1RMA



1RMA's Key Ideas

● (1) No connections
● (2) Small fixed-size ops, with solicited transfers
● (3) Software-driven congestion control
● (4) Finite resource allocation
● (5) Security-focused
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1RMA Key Idea #1: No Connections

● 1RMA NIC treats ops as independent of each other
○ Software handles iter-op ordering => less complexity
○ Failures less costly
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1RMA Key Idea #1: No Connections (cont.)

● Hardware state doesn't grow with number of endpoint pairs
● Provides fail-fast behavior: if op doesn't complete within fixed time, NIC will 

cancel it and deliver fast and precise failure notifications to the software
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Discussion Questions
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● 1RMA times out delayed ops by converting slow ops to failures. Is there a 
situation in which a op with a long runtime will never be able to run because it 
is consistently converted to a failure? 
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● 1RMA times out delayed ops by converting slow ops to failures. Is there a 
situation in which a op with a long runtime will never be able to run because it 
is consistently converted to a failure? 

● Would this be the desired behavior in this situation?



1RMA Key Idea #2: Small Ops with Solicited Transfers

● 1RMA NIC acts on small, fixed-size ops (max 4KB)
○ Large ops chunked into smaller ops
○ Enables isolation and prioritization
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1RMA Key Idea #2: Small Ops with Solicited Transfers

● 1RMA NIC acts on small, fixed-size ops (max 4KB)
○ Large ops chunked into smaller ops
○ Enables isolation and prioritization

● Solicited transfers: 1RMA only gets data it requests
○ Only requests data transfers when there's space in on-NIC SRAM

■ On-NIC solicitation window keeps track of space
○ Enables responsive congestion control
○ Prevents large incasts (many to one communication patterns) by 

bounding number of incoming bytes, preventing TCP failure
● Tolerates unordered responses by tracking byte arrivals
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1RMA Key Idea #2: Small Ops with Solicited Transfers
(cont.)
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● What is the overhead cost of chunking large operations? Do you think it's 
worth it?

● What is the overhead cost of tracking byte arrivals to tolerate unordered 
responses?



1RMA Key Idea #3: Software-Driven Congestion Control

● Hardware provides:
○ Delay statistics for each op 
○ Specific failure messages 
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1RMA Key Idea #3: Software-Driven Congestion Control

● Hardware provides:
○ Delay statistics for each op 
○ Specific failure messages 

● Software uses these values to:
○ Take specific actions to fix congestion issues (can make rapid policy 

changes)
○ Avoid wasted bandwidth and allocate bandwidth fairly
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Delay Signals

● 1RMA hardware measures both local and remote delay
○ total_delay = how long it took to execute the operation
○ local_delay = issue_delay = how long it took for the request to enter 

service at the initiator
○ remote_delay = total_delay - issue_delay
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Delay Signals

● 1RMA hardware measures both local and remote delay
○ total_delay = how long it took to execute the operation
○ local_delay = issue_delay = how long it took for the request to enter 

service at the initiator
○ remote_delay = total_delay - issue_delay

● Congestion window variables
○ One rCWND per (remote destination, direction) pair for computing remote 

delay
○ Single ICWD for computing local delay 
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Delay Signals (cont.)

● This allows its software to distinguish between local and remote congestion
○ Better performance (see evaluation section later)

52



Delay Signals (cont.)

● This allows its software to distinguish between local and remote congestion
○ Better performance (see evaluation section later)

● This is unique to 1RMA
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1RMA Key Idea #4: Finite Resource Allocation

● NIC Resource Pools are explicitly finite
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1RMA Key Idea #4: Finite Resource Allocation

● NIC Resource Pools are explicitly finite
● Result

○ Software assigns resources based on business priority
■ Prevents low priority applications from monopolizing network

○ Simplifies hardware
○ Provides predictable performance
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1RMA Key Idea #4: Finite Resource Allocation (cont.)
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1RMA Key Idea #5: Security-Focused

● All transfers encrypted and work without connections
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1RMA Key Idea #5: Security-Focused

● All transfers encrypted and work without connections
● Encryption process for each NIC salted with ascending message counters

○ Protects key integrity + protects against replay attacks
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1RMA Key Idea #5: Security-Focused (cont.)

● Apps directly manage 
encryption keys; don't need to 
trust infrastructure
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1RMA Key Idea #5: Security-Focused (cont.)

● Apps directly manage 
encryption keys; don't need to 
trust infrastructure

● Can do key rotation:
○ Without trusting local 

software stack
○ Without using local CPU
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1RMA: Operations
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● Reads
● Writes via request-to-reads
● Rekeys



1RMA: Reads
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(4) The op is sent over the network subject 
to 1RMA’s solicitation rules. 

(5) The request reaches the server-side 
1RMA NIC which reads the requested data 
via PCIe, and 

(6) streams read data as individual network 
responses. 

(7) Finally, once all the data arrives, a 
successful op completion is written to the 
client software.

Figure 3: Execution of a 2KB Read op in 1RMA. 

(1 & 2) Client performs out-of-band communication to 
obtain information to access remote memory region. 

(3) The client initiates the 2KB read op by writing a 
command into a command slot on the 1RMA NIC. 



1RMA: Writes via Request-to-Reads

● 4-hop write transactions
○ Write operations implemented as request-to-reads, where writer asks 

remote NIC to receive data via read operation
○ Adds an additional round-trip time (RTT)
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1RMA: Writes via Request-to-Reads

● 4-hop write transactions
○ Write operations implemented as request-to-reads, where writer asks 

remote NIC to receive data via read operation
○ Adds an additional round-trip time (RTT)

● Benefits
○ Writes obey solicitation (incast burst protection)
○ Secure against replay attacks
○ Consistent behavior => timeout happens after side effects in remote 

memory
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Discussion Questions

67

● The paper states that having 1RMA implement writes as remote requests to 
read “incurs the downside of an additional RTT”. Is there a situation in which 
this downside would significantly harm performance, or is it always negligible?



1RMA: Rekeys

● Specialized Rekey operation lets user cheaply install new region keys, 
simplifying encryption key rotation
○ Frequent key rotation accelerates detection of root-level compromises
○ Hardware supports frequent encryption key rotation with low availability 

disruption
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1RMA: Rekeys

● Specialized Rekey operation lets user cheaply install new region keys, 
simplifying encryption key rotation
○ Frequent key rotation accelerates detection of root-level compromises
○ Hardware supports frequent encryption key rotation with low availability 

disruption
● No more expensive than an RMA write operation
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1RMA Software

● Software abstracts large transfers & does congestion control
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1RMA Software Stack

● Layer 1 (lowest layer)
○ Managed by CommandPortal object
○ Provides command/completion queue construct
○ Handles mmap()
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1RMA Software Stack

● Layer 1 (lowest layer)
○ Managed by CommandPortal object
○ Provides command/completion queue construct
○ Handles mmap()

● Layer 2
○ Managed by CommandExecutor object
○ Handles chunking, pacing, and congestion control

● Layer 3+
○ Application software
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1RMA Software Stack (cont.)
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● Do you think 1RMA meets all of its goals? Why or why not?
● How would you evaluate 1RMA? In what case(s) do you think 1RMA performs 

the best? The worst?



Evaluation: 1RMA's Claims

● Software handles congestion control
○ Prevents apps from monopolizing network
○ Converges to fair bandwidth shares
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Evaluation: 1RMA's Claims

● Software handles congestion control
○ Prevents apps from monopolizing network
○ Converges to fair bandwidth shares

● Apps handle failure recovery and inter-operation ordering
○ Solicitation rules prevent goodput loss in all but worst cases
○ Shed load eagerly instead of risking wasted bandwidth

● Encryption 
○ At line rate, with minimal client-observable disruption

■ Line rate: 100Gbps and 100M ops/sec
○ Hardware supported key rotation
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Evaluation: Baselines

● Standard RDMA
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Evaluation: Baselines

● Standard RDMA
● Pony

○ Google's software-defined NIC
○ State-of-the-art datacenter networking alternative
○ Most similar to 1RMA in its objectives

● Note: In all experiments, network stacks limited to at most 1 CPU
○ Paper states that Pony performs much better with larger CPU allocations
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Evaluation: Performance

● Low latency in common cases
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Evaluation: Performance

● Low latency in common cases
● Latency is stable and predictable under less common failure cases
● Doesn't work as well when there are many small independent ops

○ 1RMA chunks large transfers, so smaller ops experience delay similar to 
that of a 4KB chunk

● Has high bandwidth and op rates
○ 1RMA is able to converge to and maintain 100Gbps within ~8 RTTs (with 

idle RTT of 5 microseconds and a CWND of 15 outstanding operations)
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Latency

● 1RMA has a lower latency than 
Pony and standard RDMA (when 
core limited)
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● Figure 12: Plots latency 
slowdown of small ops as 
we vary the size of the 
competing background op
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○ Since software chunks large transfers, smaller ops experience a delay 

comparable to the service time of a single 4KB chunk
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Latency (cont.)

● Figure 12: Plots latency 
slowdown of small ops as 
we vary the size of the 
competing background op

● 1RMA
○ Since software chunks large transfers, smaller ops experience a delay 

comparable to the service time of a single 4KB chunk
● Standard RDMA

○ RNIC delay is proportional to the service time of a background op, and 
potentially severe

○ Caused by RDMA's induced ordering
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Latency (cont.)

● Figure 13: Plots slowdown 
experienced by small ops 
in a heavy-tailed workload
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Latency (cont.)

● Figure 13: Plots slowdown 
experienced by small ops 
in a heavy-tailed workload

● Compared to baseline, 1RMA slows down smaller ops minimally
● However, 1RMA's median and tail slowdowns are 6-10 times smaller than 

baselines
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Congestion Control

● 1RMA quickly converges 
to fair bandwidth share 
(within ~8 RTTs)
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Congestion Control

● 1RMA quickly converges 
to fair bandwidth share 
(within ~8 RTTs)

● Without separate 
measurements for local 
and remote congestion, 
applications converge to a 
fair share of bandwidth 
20x slower



Discussion Questions

95

● The authors of the paper stated, “In all our experiments, we limit each 
networking stack to (at most) a single host CPU for network transport 
processing… With larger CPU allocations, Pony performance scales 
commensurately.” 

● With larger CPU allocations, how would Pony compare to 1RMA in terms of 
performance? 

● Do you think the authors of the paper should have included this benchmark?
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SIGCOMM 2020 Questions

A connectionless offload seems to trade-off the performance of a hardware 
implemented connected transport for scalability and hardware simplicity, 
somewhat similar to the trade-off of tightly vs. loosely coupled systems. Do you 
see cases where you might still prefer connected offloads?
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SIGCOMM 2020 Questions

A connectionless offload seems to trade-off the performance of a hardware 
implemented connected transport for scalability and hardware simplicity, 
somewhat similar to the trade-off of tightly vs. loosely coupled systems. Do you 
see cases where you might still prefer connected offloads?

I would imagine that a connection oriented connection transport would be 
still applicable in cases where the workload is not large scale or 
corresponds to a few tenants of a small scale workload, because there you 
wouldn't go into the issue of your hardware connection being exhausted.
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SIGCOMM 2020 Questions (cont.)

Several of RDMA's benefits come from offloading tasks to hardware (e.g. 
segmentation), but 1RMA moves some of these back to software. Is there a 
fundamental sweet spot for the division of labor, or does it depend on the 
workloads and use cases and keeps evolving?
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SIGCOMM 2020 Questions (cont.)

Several of RDMA's benefits come from offloading tasks to hardware (e.g. 
segmentation), but 1RMA moves some of these back to software. Is there a 
fundamental sweet spot for the division of labor, or does it depend on the 
workloads and use cases and keeps evolving?

Guiding principal: Things that can be done solely in hardware (solicitation, 
DMA-ing packet metadata, etc.) are done in hardware. Things like failure 
recovery, ordering, and congestion (which require and/or benefit from app 
intervention) are done in software.
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SIGCOMM 2020 Questions (cont.)

One main benefit of RDMA is low CPU overhead. Onloading many RDMA features 
to software increases CPU utilizations and increases the cost of the cloud. What is 
the CPU overhead?
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SIGCOMM 2020 Questions (cont.)

One main benefit of RDMA is low CPU overhead. Onloading many RDMA 
features to software increases CPU utilizations and increases the cost of the 
cloud. What is the CPU overhead?

Our evaluation shows that we are able to drive at 100 Gbps using half a 
CPU core, and we believe that that is an acceptable trade-off. Original 
requirement: supporting workloads in a multi-tenant environment. With 
many transient transfers, hardware segmentation will not work well, so 
pushed segmentation to software. Failure recovery, loss recovery, and 
ordering are application dependent, so pushed to software.
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