
Caladan
Josh Fried

MIT 6.5810
September 19, 2022

Papers

Caladan: Mitigating Interference at Microsecond Timescales [OSDI ‘20]
Josh Fried, Zain Ruan, Amy Ousterhout, Adam Belay

Shenango: Achieving High CPU Efficiency for Latency-sensitive
Datacenter Workloads [NSDI ’19]

Amy Ousterhout, Josh Fried, Jonathan Behrens, Adam Belay, Hari Balakrishnan

Need for kernel bypass in datacenters

• Using OS for microsecond-scale I/O has high overheads
• Cost of switching to kernel mode
• Cost of moving data back and forth
• Convoluted software paths

• OS thread schedulers + networking stacks cause high tail latency
• Large quantum (1-4 milliseconds) relative to target SLO (99.9th percentile <=

100us)
• Interrupt delivery + packet processing threads interrupt application threads
• Poor packet steering leads to lock contention, cache issues, load imbalance

Kernel Bypass

• Control over hardware given directly to application
• Spin poll hardware queues

• New packets received, storage commands completed, etc

• Eliminate interaction with OS
• Dedicated cores
• Pin memory, use hugepages
• Avoid syscalls

• Conventional wisdom: avoid shared state across cores
• Use per-core hardware queues, lockless datastructures, etc

• Examples: Arrakis, eRPC, IX, ZygOS, Shinjuku, Demikernel, [Shenango/Caladan]

Example:
Memcached

Better

Better

Example:
Memcached

~10x
throughput
difference

Better

Better

Drawbacks of Kernel Bypass

• Difficult to multiplex resources
• CPU cores and memory must be pinned
• I/O devices may not be usable by other applications
• Load variation makes this particularly challenging

• Programming model
• Loss of abstractions – working with raw devices
• No threading or synchronization primitives

CPU-efficient Kernel Bypass

• Performance goal:
• Provide low latency and high throughput for latency critical applications

• Efficiency goal:
• Run many applications on the machine to keep it productive

• Mix of latency critical and best-effort applications
• Can we keep a machines CPU cores 100% busy with useful work?
• Avoid overprovisioning resources to latency critical applications

Challenges

• Giving a kernel bypass app the right number of CPU cores
• Too few -> bad performance, high queueing delays
• Too many -> wasted resources

• How do we change core allocations for kernel bypass apps quickly and
efficiently?
• Slow mechanisms lead to high tail latency

• When packing together many applications on a machine, how do we
avoid interference?

Caladan: Main Ideas

• Use fine grained core allocations for high CPU efficiency
• Avoid partitioning resources statically
• Also use core allocations to control CPU interference

• Provision just enough cores to avoid queueing

• Detect + react to application queueing before SLOs are violated
• 10 microseconds decision interval, can achieve SLOs in 100us range
• Provision cores when queues build; release them as queueing abates

• Monitor for causes and effects of CPU interference

Unallocated

Caladan’s Components

DRAM
Controller

(PCIe)

Core 1 Core 2 Core 3 Core 5 Core 6

Task 1 Task 2

ksched ksched ksched ksched ksched

Runtime Runtime

Core 4

ksched

Scheduler

Core 0

ksched

• Scheduler core spin polls:
monitoring for queueing and
signals of interference,
assigns tasks to cores

• Tasks link with runtimes
• Provide threading, I/O, etc.
• Expose signals to scheduler

• KSCHED accelerates
scheduling and signal
gathering

Unallocated

Caladan’s Components

DRAM
Controller

(PCIe)

Core 1 Core 2 Core 3 Core 5 Core 6

Task 1 Task 2

ksched ksched ksched ksched ksched

Runtime Runtime

Core 4

ksched

Scheduler

Core 0

ksched

• Scheduler core spin polls:
monitoring for queueing and
signals of interference,
assigns tasks to cores

• Tasks link with runtimes
• Provide threading, I/O, etc.
• Expose signals to scheduler

• KSCHED accelerates
scheduling and signal
gathering

Unallocated

Caladan’s Components
• Scheduler core spin polls:

monitoring for queueing and
signals of interference,
assigns tasks to cores

• Tasks link with runtimes
• Provide threading, I/O, etc.
• Expose signals to scheduler

• KSCHED accelerates
scheduling and signal
gathering

DRAM
Controller

(PCIe)

Core 1 Core 2 Core 3 Core 5 Core 6

Task 1 Task 2

ksched ksched ksched ksched ksched

Runtime Runtime

Core 4

ksched

Scheduler

Core 0

ksched
• KSCHED accelerates

scheduling and signal
gathering

Caladan Runtimes

Lightweight user threading to balance work across active cores

• Per-core thread runqueues + directly-mapped hardware and
storage queues

• Thread queues are FIFO, and I/O queues are polled after
runqueues are emptied (run-to-completion).
• I/O completions result in user thread wakeups

• When a core has no work in its runqueue or I/O queues, it steals
from other cores’ queues

FIFO work queues + run-to-completion + work stealing are all
important for keeping tail latency low

runtime
library

App 1

NIC queues

app
thread

storage queues

work stealing

Runtime Features

• Fast user threading (40ns thread switch time)
• TCP and UDP networking stacks; synchronous API
• Integration with SPDK for fast storage
• High-precision us-scale timers
• Synchronization primitives (mutex, condvar, etc)
• Read-Copy-Update (RCU) for read-mostly shared datastructures

Overall careful design and optimization of the runtime to make these
features work well

Detecting Queueing

Each runtime core shares a single cache line (64 bytes) with the
scheduler and keeps it updated with:
• current head pointers for runqueue + I/O queues
• timestamp of oldest thread in the queue
• timestamp indicating when current thread began executing
• additional data about the state of the thread

I/O queues instantiated in shared memory to allow scheduler to
monitor queueing

Lifetime of a runtime

The runtime creates one linux thread per-core called a kthread at
startup

• Each kthread blocks using a system call until the scheduler core
unblocks it
• When woken, a kthread searches for work: attempting to run local

user threads, poll/process completions from I/O queues, and steal
work from other cores
• If a thread is unable to find any work to do, it blocks again and waits

for the scheduler to unblock it

Top Level Core Allocation Algorithm

Every 10 microseconds:
foreach p in all_procs:

foreach k in p.kthreads:
qdelay = 0
foreach q in [k.runq, k.netq, k.storageq]:

head element in queue is the oldest item
qdelay += current_time – q[q.head].enq_time;

if qdelay >= 10 microseconds:
add_core(p)
break

Policies about granting cores

• Best effort tasks never preempt latency-critical tasks
• Latency critical tasks can and do preempt latency critical tasks

• Latency critical tasks can preempt each other in certain circumstances
• For example, if one is using much more than its fair share

• Other constraints imposed when managing CPU interference
• Which cores and how many cores are available to application

• Try to select best core given cache locality and HT effects

Preempting a runtime core

Caladan leverages Linux signals to inform runtimes that they are about
to be preempted

Provide opportunity to cleanly park
• Running uthread placed back in runqueue so it can be stolen by other

kthreads
• Defers parking when runtime is in a critical section of code (e.g. for a spinlock)

Waking blocked kthreads

• Initial version:
• Shared eventfd file descriptor between kthread and scheduler
• kthread issues blocking read() on descriptor, scheduler calls write() to wake it

up when it desires

• Latest version:
• Custom kernel module (ksched) provides a better interface for the scheduler

core
• Allows batching of multiple wakeups using multicast IPIs
• Offloads scheduling work (including signal delivery) to remote cores
• Shared memory interface for issuing commands, monitoring idle completions, and more

Interference in Shared CPUs

RAM

L1 + L2

LLC

L1 + L2

Core 54 Core 55Core 1Core 0

. . .

. . .

Interference in Shared CPUs

Hyperthreading Interference

App 1 App 2

RAM

L1 + L2

LLC

L1 + L2

Core 54 Core 55Core 1Core 0

. . .

. . .

Interference in Shared CPUs

LLC Interference

App 1 App 2

RAM

L1 + L2

LLC

L1 + L2

Core 54 Core 55Core 1Core 0

. . .

. . .

Interference in Shared CPUs

App 1 App 2

Memory Bandwidth Interference
RAM

L1 + L2

LLC

L1 + L2

Core 54 Core 55Core 1Core 0

. . .

. . .

Managing Memory Bandwidth
Interference

 0

 200

 400

 600

 800

 0 5 10 15 20 25 30

M
em

or
y

La
t.

(n
s)

Generated Memory Bandwidth (GB/s)

Be
tt

er

• Policy: keep total bandwidth
below target (~80%)

• Detecting Bandwidth Usage:
• DRAM controller counters

(checked every 10us)
• Per-core LLC miss counters for

task attribution

• Action: Throttle core count for
high bandwidth tasks

Memory
latency

degrades
severely

Managing Hyperthread Interference

• Pair different tasks on hyperthread sibling cores
• Many other systems disable hyperthreads all together, can be up to a 30% loss in machine

throughput

• Policy: Allow an LC request to execute on the same physical core as another task
for a fixed amount of time (THRESH_HT)
• Slowdown due to HT interference is bounded by THRESH_HT
• Positive effect on tail latency even when interference is not severe

• Action: Prevent any task from executing on the hyperthread twin core when an LC
request has exceeded THRESH_HT in execution time

• Generalized strategy from Elfen Scheduling [ATC ‘16]
• Caladan improves utilization by allowing arbitrary task pairings

Managing LLC Interference

LLC interference is the least extreme of the three types

No active policy to manage it

Instead, it is sufficient to rely on the top-level core allocation algorithm
to make up for any lost processing capacity

Implementation

Scheduler
• Optimized to run the full control loop every 10 μs
• 3500 LOC
• Currently supports Intel CPUs

KSCHED – Linux kernel module
• Leverages hardware multicast IPIs
• 530 LOC

Runtime
• ~10,000 LOC
• Custom mlx5 driver for Mellanox ConnectX-5+ NICs

• Fast flow steering for fast core reallocation
• Exposes queueing signals to scheduler

Available at https://github.com/shenango/caladan

https://github.com/shenango/caladan

Interference Example

37

� � � � � � �
7LPH��V�

�

��

���

0
HP
��%
�:
���
�

� � � � � � �
7LPH��V�

���
���
���
���

��
��
�
�/
DW
���
͐V
�

Garbage
Collection

1000 x
latency

increase

Memcached
2 cores

Be
tt

er

GC Task
20 cores

Memcached and GC

Memcached

GC Task

Latency
reaches
580 msBe

tt
er

Be
tt

er
Low tail
latency
(50 μs)

GC task able
to utilize all

available
resources

Throttles BE
after GC has
completed

Garbage Collection Cycle

Key

Caladan can improve latency 11,000x when interference is phased

Colocating Many Tasks

• 3 Latency-Critical Tasks
• Memcached
• Flash storage service
• Silo

• 2 Best-Effort Tasks
• Swaptions (GC Task)
• Streamcluster

30 seconds, variable load and interference

SSD

���
���
���

VZDSWLRQV�*& VWUHDPFOXVWHU

VWRUDJH PHPFDFKHG VLOR

��

���

��
��
�
�/
DW
HQ
F\
��͐
V�

���

���

�
��
��

/&
�5
36
���
�

� � �� �� �� ��
7LPH��V�

�

�

��

&R
UH
V

�

��

��

%(
�2
S�
V�
��
�

Colocating Many Tasks

���
���
���

VZDSWLRQV�*& VWUHDPFOXVWHU

VWRUDJH PHPFDFKHG VLOR

��

���

��
��
�
�/
DW
HQ
F\
��͐
V�

���

���

�
��
��

/&
�5
36
���
�

� � �� �� �� ��
7LPH��V�

�

�

��

&R
UH
V

�

��

��

%(
�2
S�
V�
��
�

���
���
���

VZDSWLRQV�*& VWUHDPFOXVWHU

VWRUDJH PHPFDFKHG VLOR

��

���
��
��
�
�/
DW
HQ
F\
��͐
V�

���

���

�
��
��

/&
�5
36
���
�

� � �� �� �� ��
7LPH��V�

�

�

��

&R
UH
V

�

��

��

%(
�2
S�
V�
��
�

���
���
���

VZDSWLRQV�*& VWUHDPFOXVWHU

VWRUDJH PHPFDFKHG VLOR

��

���

��
��
�
�/
DW
HQ
F\
��͐
V�

���

���

�
��
��

/&
�5
36
���
�

� � �� �� �� ��
7LPH��V�

�

�

��
&R
UH
V

�

��

��

%(
�2
S�
V�
��
�

���
���
���

VZDSWLRQV�*& VWUHDPFOXVWHU

VWRUDJH PHPFDFKHG VLOR

��

���

��
��
�
�/
DW
HQ
F\
��͐
V�

���

���

�
��
��

/&
�5
36
���
�

� � �� �� �� ��
7LPH��V�

�

�

��

&R
UH
V

�

��

��

%(
�2
S�
V�
��
�

���
���
���

VZDSWLRQV�*& VWUHDPFOXVWHU

VWRUDJH PHPFDFKHG VLOR

��

���

��
��
�
�/
DW
HQ
F\
��͐
V�

���

���

�
��
��

/&
�5
36
���
�

� � �� �� �� ��
7LPH��V�

�

�

��

&R
UH
V

�

��

��

%(
�2
S�
V�
��
�

Latencies (99.9th percentile)
memcached

storage

silo

Offered Load (% of peak)

���
���
���

VZDSWLRQV�*& VWUHDPFOXVWHU

VWRUDJH PHPFDFKHG VLOR

��

���

��
��
�
�/
DW
HQ
F\
��͐
V�

���

���

�
��
��

/&
�5
36
���
�

� � �� �� �� ��
7LPH��V�

�

�

��

&R
UH
V

�

��

��

%(
�2
S�
V�
��
�

BE Op/s (% of peak)

Be
tt

er

Be
tt

er���
���
���

VZDSWLRQV�*& VWUHDPFOXVWHU *&�&\FOH

VWRUDJH PHPFDFKHG VLOR

��

���
��
��
�
�/
DW
HQ
F\
��͐
V�

���

���

�
��
��

/&
�5
36
���
�

� � �� �� �� ��
7LPH��V�

�

�

��

&R
UH
V

�

��

��

%(
�2
S�
V�
��
�

���
���
���

VZDSWLRQV�*& VWUHDPFOXVWHU

VWRUDJH PHPFDFKHG VLOR

��

���
��
��
�
�/
DW
HQ
F\
��͐
V�

���

���

�
��
��

/&
�5
36
���
�

� � �� �� �� ��
7LPH��V�

�

�

��

&R
UH
V

�

��

��

%(
�2
S�
V�
��
�

Caladan maintains low tail latency for all 3 LC tasks under varying load and interference

Be
tt

er
Be

tt
er

Core allocations
occur up to 230,000

times per second

Requirements for Applications

Applications must link with the runtime
• Export signals, balance work across active cores
• Realistic programming model

• Partial compatibility layer for some systems libraries

LC applications must expose internal parallelism to runtime
• Example: Memcached modified to spawn a thread per-connection

• Allows scheduler to observe delays
• Allows scheduler to mitigate delays with additional cores

No required changes for BE tasks

Overload Control
(feat. Breakwater)

Inho Cho

Latency is an important metric in DC
- It directly impacts a user experience

- E.g. How long does it take to fetch a website?
- E.g. It determines how fast you decide whether to buy/sell

stocks
- Especially for interactive applications like Cloud gaming

- SLO (Service Level Objective) is often defined by
latency

Many efforts to reduce the latency
1. Fast Network: Network latency (~ 5 us)

2. Fast Storage: M.2 NVME SSD (~ 20 us)

3. In-memory operations: Memcached, Reddis, Ignite

Presenter Notes
Presentation Notes
Over the decade, network and storage get faster and in-memory operations become more prevalent. A single hop network latency is now less than 5 microseconds,write operation on storage takes less than 20 microseconds,And applications with in-memory operations like memcahced, reddis, or Apache Ignite become more popular.Thanks to faster network and storage, and more prevalent in-memory operations, many RPCs now only take microseconds of request processing time in modern datacenters.

Trend: High Fan-out
Remote memory

https:/ /

Encryption Cache Storage

Web serverInternet

Presenter Notes
Presentation Notes
With microsecond-scale RPCs, datacenter applications are often implemented with multiple RPCs for better maintenance and reliability.For example, a web service may have RPCs for accessing disaggregated memory, encryption, caching, and storage.With such a fan-out traffic pattern, low tail latencies are especially important to provide low response time to the user.

Traditional Solution
Keep CPU utilization low to
ensure low latency by over-
provisioning the resources

Barroso, L.A. and Hölzle, U., 2007. The case for energy-proportional
computing. Computer, 40(12), pp.33-37.

Load Imbalance Unexpected user traffic

Packet bursts Redirected traffic due to failure

!
!

Causes of Server Overload

Presenter Notes
Presentation Notes
However, achieving low tail latency is challenging because of server overload.RPC servers get overloaded by various reasons including load imbalance, unexpected user traffic, packet bursts, or redirected traffic due to failure.

0

200

400

600

800

0 0.4 0.8 1.2 1.6

Th
ro

ug
hp

ut

(k
re

qs
/s

)

Clients' Demand (Mreqs/s)

1
10

100
1,000

10,000
100,000

0 0.4 0.8 1.2 1.6

La
te

nc
y

(μ
s)

Clients' Demand (Mreqs/s)

What happens when the server is overloaded?

99th

50th

Without overload control, server overload makes almost all
requests violate its SLO.

5

SLO

Presenter Notes
Presentation Notes
To see what happens in the performance without overload control, we measure the throughput and latency with different clients’ demand by varying the request generation rate from 1,000 clients.We use the synthetic workload with exponential service time distribution with 10 us average.Both throughput and latency are measured at the client-side.Latencies are measured by the time from the request creation to the response arrival including client-side queueing delay.If an RPC server is overloaded without proper overload control, [click]throughput degrades because more CPUs are used for packet processing and request parsing; and less CPUs are used for business logic, [click]and tail latency and even median latency skyrockets. [click]As a results, when the server is overloaded, even though the server is making some progress, almost all requests violate its SLO.

Overload Control Problem

Clients

Server

We want to achieve low latency experienced by clients,
and high throughput as long as latency isn’t harmed.

Presenter Notes
Presentation Notes
However, achieving low tail latency is challenging because of server overload.RPC servers get overloaded by various reasons including load imbalance, unexpected user traffic, packet bursts, or redirected traffic due to failure.

Ideal Overload Control

Server

Clients
6

Request

should keep request queue short, but not empty

Presenter Notes
Presentation Notes
Because an empty request queue at the server wastes the resources and degrade throughput and large queue increases the RPC latency, [click]to achieve both high throughput and low latency, an ideal overload control should keep the request queue short, but not empty at all times.

Server

Clients
6

Request

Ideal Overload Control
should inform clients about overload quickly

Presenter Notes
Presentation Notes
Instead of building up the queue at the server side, the excess requests should be queued at the clients as the clients have more flexibility with the requests unlikely to be served within SLO.With excess load queued at the clients, clients can learn the server overload quickly and react to it in proper way. For example, they can send those requests to another replica, or degrades the service quality by issuing less requests.

Strawman #1: Server-side AQM

Server

Clients
7

Request

drop

Drop notification

Presenter Notes
Presentation Notes
One strawman approach to achieve this is server-side AQM.If the request queue grows large, the server can drop the requests and notify the clients

Strawman #1: Server-side AQM

Server

Clients
7

The cost of packet processing is comparable to the
service time

Packet
processing

Request
execution

≈

Request

Presenter Notes
Presentation Notes
However, with microsecond-scale RPC, request drop is expensive because the cost of processing packets and parsing the requests is comparable to the request execution time.

Strawman #2: Client Rate limiting

Server

Clients
8

Request

Presenter Notes
Presentation Notes
An alternative strawman design is client-side rate limiting. Based on the probed server status, clients can adjusts its request sending rate in a decentralized way.

Server

Clients
8

Request

Probing server status incur high message overhead

Hey server, are you busy?

Hey server, are you busy?

Hey server, are you busy?

Hey server, are you busy?

Strawman #2: Client Rate limiting

Presenter Notes
Presentation Notes
However, it requires clients to have a fresh view of server’s status to react to the congestion without delay.This leads to additional message overhead to probe the server status.To make the problem worse, the message overhead increases with more number of clients.

Strawman #2: Client Rate limiting

Clients

Server

N
Capacity: C

N/C

N/C

N/C

N/C

Presenter Notes
Presentation Notes
However, achieving low tail latency is challenging because of server overload.RPC servers get overloaded by various reasons including load imbalance, unexpected user traffic, packet bursts, or redirected traffic due to failure.

Strawman #2: Client Rate limiting

Clients

Server

Even with clients’ ideal rate, queue still can build up

N
Capacity: C

N/C

N/C

N/C

N/C Min: 0
Max: N-1
Avg: 𝑁𝑁 − 1

𝐸𝐸 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑑𝑑𝑞𝑞𝑑𝑑𝑑𝑑𝑑𝑑 =
𝑁𝑁 − 1
𝐶𝐶

Presenter Notes
Presentation Notes
However, achieving low tail latency is challenging because of server overload.RPC servers get overloaded by various reasons including load imbalance, unexpected user traffic, packet bursts, or redirected traffic due to failure.

Breakwater

9

Overload control scheme for μs-scale RPCs

Components Benefits

1. Credit-based admission control Coordinates requests with
minimum delay

2. Demand speculation Minimizes message overhead

3. Delay-based AQM Ensures low tail latency

Presenter Notes
Presentation Notes
In this work, we present Breawater, an overload control scheme for microsecond scale RPCs which employs credit-based admission control to coordinate the requests with minimum delay, demand speculation to minimize message overhead, and delay-based AQM on short queue to ensure low tail latency at all times.

Breakwater’s benefits

0
200
400
600
800

0 0.4 0.8 1.2 1.6

Th
ro

ug
hp

ut

(k
re

qs
/s

)

Clients' Demand (Mreqs/s)

0
200
400
600
800

1,000

0 0.4 0.8 1.2 1.6
99

%
-il

e
La

te
nc

y
(μ

s)
Clients' Demand (Mreqs/s)

IdealBreakwater

SLO

10

(1) High throughput
(2) Low and bounded tail latency
(3) Scalability to a large number of clients

Handles server overload with μs-scale RPCs with

Presenter Notes
Presentation Notes
Breakwater effectively handles server overload with microsecond scale RPCs.As shown in the figures below, it achieves [click] high throughput, [click] and low and bounded tail latency. [click]In addition, Breakwater is scalable to a large number of clients.Let me dive into the details how Breakwater achieves this.

Queueing delay as congestion signal

Server

Clients RequestCredit Response
11

Presenter Notes
Presentation Notes
In Breakwater, we use request queueing delay as a congestion signal.Request queueing delay is measured by the elapsed time between when the request arrives and when the request starts to be processed.If the queueing delay exceeds the target delay which is derived from SLO, Breakwater regards the server as overloaded.

Server

Clients RequestCredit Response
12

Comp. #1: Credit-based admission control
Breakwater controls amount of incoming requests
with credits

Presenter Notes
Presentation Notes
With request queueing delay as a congestion signal, Breakwater controls the amount of incoming requests using credit-based admission controlinspired by recent network congestion controls in datacenter.

Server

Clients RequestCredit Response
12

Comp. #1: Credit-based admission control
Breakwater controls amount of incoming requests
with credits

Presenter Notes
Presentation Notes
For credit-based admission control, each RPC server maintains a pool of credits

Server

Clients

For every RTT:
If delay < target:
credit += A

Else:
B = MAX(1 − β � 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑−𝑡𝑡𝑑𝑑𝑡𝑡𝑡𝑡𝑑𝑑𝑡𝑡

𝑡𝑡𝑑𝑑𝑡𝑡𝑡𝑡𝑑𝑑𝑡𝑡
, 0.5)

credit ×= B

RequestCredit Response
12

Comp. #1: Credit-based admission control
Breakwater controls amount of incoming requests
with credits

Presenter Notes
Presentation Notes
And the number of credits in the credit pool is adjusted based on whether the server is overloaded or not.For every RTT, if the queueing delay is less than the target, that is if the server is not overloaded, it additively increase the number of credits,Otherwise, if the server is overloaded with queueing delay exceeding the target, it reduces the number of credits with scaled multiplicative factor.

Server

Clients

For every RTT:
If delay < target:
credit += A

Else:
B = MAX(1 − β � 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑−𝑡𝑡𝑑𝑑𝑡𝑡𝑡𝑡𝑑𝑑𝑡𝑡

𝑡𝑡𝑑𝑑𝑡𝑡𝑡𝑡𝑑𝑑𝑡𝑡
, 0.5)

credit ×= B

RequestCredit Response
12

Comp. #1: Credit-based admission control
Breakwater controls amount of incoming requests
with credits

Presenter Notes
Presentation Notes
And the number of credits in the credit pool is adjusted based on whether the server is overloaded or not.For every RTT, if the queueing delay is less than the target, that is if the server is not overloaded, it additively increase the number of credits,Otherwise, if the server is overloaded with queueing delay exceeding the target, it reduces the number of credits with scaled multiplicative factor.

Server

Clients

For every RTT:
If delay < target:
credit += A

Else:
B = MAX(𝟏𝟏 − 𝜷𝜷 � 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅−𝒕𝒕𝒅𝒅𝒕𝒕𝒕𝒕𝒅𝒅𝒕𝒕

𝒕𝒕𝒅𝒅𝒕𝒕𝒕𝒕𝒅𝒅𝒕𝒕
, 0.5)

credit ×= B

RequestCredit Response
12

Comp. #1: Credit-based admission control
Breakwater controls amount of incoming requests
with credits

Presenter Notes
Presentation Notes
And the number of credits in the credit pool is adjusted based on whether the server is overloaded or not.For every RTT, if the queueing delay is less than the target, that is if the server is not overloaded, it additively increase the number of credits,Otherwise, if the server is overloaded with queueing delay exceeding the target, it reduces the number of credits with scaled multiplicative factor.

Server

Clients RequestCredit Response
13

register

Client 1
Client 2
Client 3
Client 4

Comp. #1: Credit-based admission control
Breakwater controls amount of incoming requests
with credits

Presenter Notes
Presentation Notes
And the server maintains a list of clients who issues requests to the server.[click] When a new client joins and wants to subscribe the credits, it sends a register message to the server.[click]Upon receiving the register message, the server adds the client to the client list.

Server

Clients RequestCredit Response
13

Client 1
Client 2
Client 3
Client 4

Comp. #1: Credit-based admission control
Breakwater controls amount of incoming requests
with credits

Presenter Notes
Presentation Notes
If a server has available credits in its credit pool, it distributes the credits to the clients.

Server

Clients RequestCredit Response
13

Client 1
Client 2
Client 3
Client 4

Comp. #1: Credit-based admission control
Breakwater controls amount of incoming requests
with credits

Presenter Notes
Presentation Notes
The clients are only allowed to send request with credits.When the server receives the request, it enqueues the request to the request queue; and process it in first-come first-served manner.Once the server starts to process a request, it runs to completion.

Server

Clients RequestCredit Response
13

Client 1
Client 2
Client 3
Client 4

Comp. #1: Credit-based admission control
Breakwater controls amount of incoming requests
with credits

Presenter Notes
Presentation Notes
After the request is processed, the response is sent back to the clients.

Server

Clients RequestCredit Response
13

deregister

Client 1
Client 2
Client 3
Client 4

Comp. #1: Credit-based admission control
Breakwater controls amount of incoming requests
with credits

Presenter Notes
Presentation Notes
When a client has no further requests and wants to unsubscribe the credits, it sends deregister message to the server and the server removes the client from the client list.

0

200

400

600

800

0 0.4 0.8 1.2 1.6

Th
ro

ug
hp

ut

(k
re

qs
/s

)

Clients' Demand (Mreqs/s)

0
200
400
600
800

1,000

0 0.4 0.8 1.2 1.6

99
%

-il
e

La
te

nc
y

(μ
s)

Clients' Demand (Mreqs/s)

No overload control Idealcredit

SLO

Credit-based admission control has lower and bounded
tail latency but lower throughput.

15

Impact of Credit-based Admission Control

Presenter Notes
Presentation Notes
As a result, even though naïve credit-based admission control achieves [click] lower and bounded tail latency thanks to per-request coordination with credits,[click]it cannot achieve high throughput because of the message overhead. Then, how can we eliminate the demand messages while taking advantages of credit-based admission control?

Demand Message Overhead

Server

Clients RequestCredit Response

Server needs to know which client has demand

14

Client 1
Client 2
Client 3
Client 4

Presenter Notes
Presentation Notes
Credit-based admission control can effectively bound the number of requests in the request queue with explicit scheduling by credits.However, this naïve credit-based admission control has one significant drawback. [click]It requires the server to know how much demand each client has; in order to decide to which client and how many credits the server has to issue.[click]This leads to additional demand messages from clients to server in order to synchronize up-to-date demand information.Those demand messages introduce additional message overhead to the server which is significant especially with microsecond-scale RPCs because the clients’ demand changes frequently as they may give up a request or decide to send a request to another replica.To make the matter worse, the message overhead increases as the number of clients increases.

Server

Clients RequestCredit Response
14

Demand Message Overhead
Server needs to know which client has demand

Presenter Notes
Presentation Notes
Credit-based admission control can effectively bound the number of requests in the request queue with explicit scheduling by credits.However, this naïve credit-based admission control has one significant drawback. [click]It requires the server to know how much demand each client has; in order to decide to which client and how many credits the server has to issue.[click]This leads to additional demand messages from clients to server in order to synchronize up-to-date demand information.Those demand messages introduce additional message overhead to the server which is significant especially with microsecond-scale RPCs because the clients’ demand changes frequently as they may give up a request or decide to send a request to another replica.To make the matter worse, the message overhead increases as the number of clients increases.

Server

Clients

I have n requests!

RequestCredit Response
14

Demand Message Overhead
Server needs to know which client has demand

Presenter Notes
Presentation Notes
Credit-based admission control can effectively bound the number of requests in the request queue with explicit scheduling by credits.However, this naïve credit-based admission control has one significant drawback. [click]It requires the server to know how much demand each client has; in order to decide to which client and how many credits the server has to issue.[click]This leads to additional demand messages from clients to server in order to synchronize up-to-date demand information.Those demand messages introduce additional message overhead to the server which is significant especially with microsecond-scale RPCs because the clients’ demand changes frequently as they may give up a request or decide to send a request to another replica.To make the matter worse, the message overhead increases as the number of clients increases.

Piggybacking Demand Information

Server

Clients

I have n requests!

RequestCredit Response

Breakwater piggybacks clients’ demand
information into requests.

16

Presenter Notes
Presentation Notes
In Breakwater, instead of maintaining full knowledge on clients’ demand with demand message, [click]

Server

Clients

I have n requests!

RequestCredit Response

(I have n more request)

16

Piggybacking Demand Information
Breakwater piggybacks clients’ demand
information into requests.

Presenter Notes
Presentation Notes
All demand information is piggybacked to the requests, and the server keeps track of clients’ demand based on those piggybacked demand information.

Server

Clients RequestCredit Response
17

Comp. #2: Demand Speculation
Breakwater speculate clients’ demand to minimize
message overhead

Presenter Notes
Presentation Notes
However, because demand information can be delivered only with requests, the server may have stale information of some clients.Even though the demand information for some clients are stale, the server distributes the credits based on it. Since clients’ demand is not perfectly synchronized, clients may receive more credits than its demand.

Server

Clients RequestCredit Response
17

Comp. #2: Demand Speculation
Breakwater speculate clients’ demand to minimize
message overhead

Presenter Notes
Presentation Notes
If a client receives more credits than necessary, it holds those credits for the future use.If the server still has available credit after distributing credits based on its latest demand information,

Server

Clients RequestCredit Response
17

Comp. #2: Demand Speculation
Breakwater speculate clients’ demand to minimize
message overhead

Presenter Notes
Presentation Notes
It chooses random clients among clients who “used up” all the credits; and issues credits to them speculating that the clients may have new demand since last advertisement.Demand speculation is our key design choice to provide scalability to a large number of clients with minimal message overhead.

Idealcredit credit + demand spec.

0

200

400

600

800

0 0.4 0.8 1.2 1.6

Th
ro

ug
hp

ut

(k
re

qs
/s

)

Clients' Demand (Mreqs/s)

No overload control

0
200
400
600
800

1,000

0 0.4 0.8 1.2 1.6

99
%

-il
e

La
te

nc
y

(μ
s)

Clients' Demand (Mreqs/s)
18

Demand speculation improves throughput with
higher tail latency

SLO

Impact of Adding Demand Speculation

Presenter Notes
Presentation Notes
With demand speculation, [click] Breakwater can achieve high throughput, [click]but with higher tail latency What makes the tail latency higher and how can we prevent it?

Credit Overcommitment

Server

Clients RequestCredit Response
19

Server issues more credit than the number of
requests it can accomodate

Presenter Notes
Presentation Notes
With piggybacking demand information and demand speculation, the clients with no demand may have unused credits .Because those unused credit do not increase the queueing delay at the server in RTT, server decides to issue more credits to other clients.This leads the server to issue more credits than it can accommodate, which we refer credit overcommitment.

Incast Causing Long Queue

Server

Clients RequestCredit Response
19

With credit overcommitment, multiple requests
may arrive at the server at the same time

Presenter Notes
Presentation Notes
With credit overcommitment, multiple clients can send requests to the server at the same time in the future, causing incast.When incast happens, tail latency becomes higher as request queueing delay increases.

Comp. #3: Delay-based AQM

Server

Clients RequestCredit Response
19

To ensure low tail latency, the server drops
requests if queueing delay exceeds threshold.

drop

Presenter Notes
Presentation Notes
In Breakwater, to ensure low tail latency even when incast happens, the server drops the request if the queueing delay exceeds the drop threshold. Because Breakwater uses delay-based AQM as a safety net by dropping the requests only when the request queue grows large with incast, It rarely drops the requests during operation.

Server

Clients RequestCredit Response
19

drop

Comp. #3: Delay-based AQM
To ensure low tail latency, the server drops
requests if queueing delay exceeds threshold.

Presenter Notes
Presentation Notes
For the dropped request, the server sends the reject message immediately to notify the clients of rejected request. After receiving the reject message, the client can decide what to do with it. For example they can retransmit or give up the request.

Impact of Adding Delay-based AQM

0

200

400

600

800

0 0.4 0.8 1.2 1.6

Th
ro

ug
hp

ut

(k
re

qs
/s

)

Clients' Demand (Mreqs/s)

0
200
400
600
800

1,000

0 0.4 0.8 1.2 1.6
99

%
-il

e
La

te
nc

y
(μ

s)
Clients' Demand (Mreqs/s)

Ideal
credit

credit + demand spec.
No overload control

credit + demand spec. + AQM

20

SLO

Breakwater achieves high throughput and low and
bounded tail latency at the same time

Presenter Notes
Presentation Notes
Equipped with all of three key component, credit-based admission control, demand speculation, and delay-based AQM,Breakwater achieves [click] high throughput [click] while maintaining low and bounded tail latency.

Testbed Setup
- xl170 in Cloudlab
- 11 machines are connected to a single switch
- 10 client machines / 1 server machine
- Implementation on Shenango as a RPC layer

Synthetic Workload
- Clients generate request with open-loop Poisson process
- Requests spin-loops specified amount of time at server
- Exponential service time distribution with 10μs average

Evaluation

21

Presenter Notes
Presentation Notes
To evaluate Breakwater, we constructed testedbed in Cloudlab.We implemented Breakwater as an RPC library on top of TCP transport layer over Shenango.We use the synthetic workload where an RPC spin-loops specified amount of time at the server.

(1) Does Breakwater achieves high throughput and low tail
latency even with demand spikes?

(2) Does Breakwater provides fast notification for the rejected
requests?

(3) Is Breakwater scalable to many clients?

Evaluation

22

Baselines:
DAGOR

priority-based overload control used in WeChat
SEDA

adaptive overload control for staged event-driven
architecture

Presenter Notes
Presentation Notes
Through the evaluation we answer three key questions.Does breakwater achieves high throughput and low tail latency even with demand spikesDoes breakwater provides fast notification for the rejected requests?Is Breakwater scalable to many clients?We compare Breakwater’s performance with two existing state-of-the-art overload control mechanisms: DAGOR and SEDA.DAGOR is a priority-based overload control scheme used in WeChat microservices, And SEDA is an adaptive overload control for staged event-driven architecture which rate-limits the clients based on measured response time.

High Goodput with Fast Convergence

0
400
800

1,200

0 2 4 6 8 10

G
oo

dp
ut

(k

re
qs

/s
)

Time (seconds)

Breakwater DAGOR SEDA Load Ideal

0.5 s
1.6 s

23

Breakwater converges to higher goodput 25x faster than
DAGOR and 79x faster than SEDA.

0
400
800

1,200
D

em
an

d
(k

re
qs

/s
)

Capacity

Presenter Notes
Presentation Notes
To compare the Breakwater to existing approaches, we define a metric called goodput.Goodput represents the rate of responses whose latency is less than SLO. To see how each overload control behaves with sudden demand shift, we generate the load from 1,000 clients varying the per-client demand over time.When the clients’ demand suddenly exceed the server capacity by 40% at time 4, Breakwater instantly converges within less than 20 ms while both DAGOR and SEDA experience goodput collapse.DAGOR and SEDA take a half second and 1.6 seconds to recover from congestion collapse, respectively.Even after the convergence, Breakwater achieves 6% higher steady-state goodput than DAGOR and 5% higher than SEDA.

Low and Bounded Tail Latency

0.01
0.1

1
10

100
1000

0 2 4 6 8 10

99
%

-il
e

La
te

nc
y

(m
s)

Time (seconds)

SLO

Breakwater DAGOR SEDA

24

Breakwater maintains low tail latency even with load
spikes.

0
400
800

1,200
D

em
an

d
(k

re
qs

/s
)

Capacity

Presenter Notes
Presentation Notes
The goodput collapse of DAGOR and SEDA stems from long queueing delay caused by request queue build up.During the congestion collapse, almost all requests violate its SLO with SEDA and DAGOR.By contrast, Breakwater maintains its tail latency around SLO even when the clients’ demand suddenly exceeds the server capacity.

Fast Notification of Reject

0.01
0.1

1
10

100
1000

0 2 4 6 8 10M
ea

n
Re

je
ct

D

el
ay

 (m
s)

Time (seconds)

SLO

Breakwater DAGOR

25

Breakwater notifies rejected request to clients before
violating its SLO.

0
400
800

1,200
D

em
an

d
(k

re
qs

/s
)

Capacity

Presenter Notes
Presentation Notes
To demonstrate how fast Breakwater notifies request drop to the client, we measure the reject delay, the time from request issue to reject message arrival at the client.Breakwater delivers reject messages to the client before violating its SLO even when the server is overloaded so that the clients can do something for the rejected request.On the other hand, DAGOR’s rejection message is delayed up to a few hundres of milliseconds during congestion collapse, which make clients hard to distinguish whether the request is taking long time to process or the server is congested.Note that as SEDA doesn’t drop the request at the server, there is no reject messages for SEDA in normal operation.

Scalability to Many Clients

0
200
400
600
800

1000

100 1k 10kG
oo

dp
ut

 (k
re

qs
/s

)

The number of clients

Breakwater DAGOR SEDA

+10%

26

Breakwater easily scales to 10,000 clients.

Presenter Notes
Presentation Notes
To demonstrate scalability to a large number of clients, with fixed clients’ demand of twice as capacity, we vary the number of clients and measure the goodput of three overload controls.Even though all three systems experience goodput degradation as the number of clients increases, Breakwater demonstrates the least degradation achieving 10 percent higher goodput compared to DAGOR and SEDA with 10,000 clients.More experiment results including the one with real application and various workloads are available in the paper.

• Breakwater is a server-driven credit-based overload
control system for μs-scale RPCs

d

• Breakwater’s key components include
(1) Credit-based admission control
(2) Demand speculation
(3) Delay-based AQM

D

• Our evaluation shows that Breakwater achieves
(1) Low & bounded tail latency with high throughput
(2) Fast notification for a rejected request
(3) Scalability to many clients

27

Conclusion

Presenter Notes
Presentation Notes
Let me conclude the talk.Breakwater is a server-driven credit-based overload control devised for microsecond scale RPCsWith credit-based admission control, demand speculation, and delay-based AQM, Breakwater achieves low and bounded tail latency with high throughput, fast notification for a rejected request, and scalability to many clients.We believe that Breakwater is an important step towards the overload control over more complex datacenter applications with multiple hierarchy of microservices.

- Can you think of better congestion signal?
- What if other than CPU is the bottleneck?
- What if we use processor sharing model instead of run-to-

completion?
- What would be the corner case where Breakwater is not efficient?

Can you make it more efficient?
- What infrastructure can you build on top of Breakwater?

27

Open Questions

Presenter Notes
Presentation Notes
Let me conclude the talk.Breakwater is a server-driven credit-based overload control devised for microsecond scale RPCsWith credit-based admission control, demand speculation, and delay-based AQM, Breakwater achieves low and bounded tail latency with high throughput, fast notification for a rejected request, and scalability to many clients.We believe that Breakwater is an important step towards the overload control over more complex datacenter applications with multiple hierarchy of microservices.

Github:
http://inhocho89.github.io/breakwater

Full paper:
https://inhocho89.github.io/papers/osdi20overload.pdf

27

Feel free to play around with it!

Presenter Notes
Presentation Notes
Let me conclude the talk.Breakwater is a server-driven credit-based overload control devised for microsecond scale RPCsWith credit-based admission control, demand speculation, and delay-based AQM, Breakwater achieves low and bounded tail latency with high throughput, fast notification for a rejected request, and scalability to many clients.We believe that Breakwater is an important step towards the overload control over more complex datacenter applications with multiple hierarchy of microservices.

http://inhocho89.github.io/breakwater
https://inhocho89.github.io/papers/osdi20overload.pdf

Intel PT
Inho Cho

Intel-PT

Hardware supported Process Trace
- It records whether a branch is Taken(T)/Not Taken (NT)

for “every” branch during program execution

Suppose you want to record all the instruction executed
by the CPU

Intel-PT Example
Instructions
push
mov
add
cmp
je .label
mov
.label
call (edx)

Intel-PT Example
Instructions
push
mov
add
cmp
je .label
mov
.label
call (edx)

PT Trace
CYC 0x1
T
CYC 0x8
0x407e1d8

Timing Information
- PSB: TSC
- [Default] MTC: from hardware

crystal clock (CTC)
- CYC: Cycle-accurate Timer

Intel-PT Example
Instructions
push
mov
add
cmp
jne %eax .label
mov
.label
call (%edx)

PT Trace
CYC 0x1
T
CYC 0x8
0x407e1d8

Branch Information
- Taken / Not Taken

Intel-PT Example
Instructions
push
mov
add
cmp
jne %eax .label
mov
.label
call (%edx)

PT Trace
CYC 0x1
T
CYC 0x8
0x407e1d8 Target IP Address

Intel-PT Example
Instructions
push
mov
add
cmp
je .label
mov
.label
call (edx)

PT Trace
CYC 0x1
T
CYC 0x8
0x407e1d8

Cycle instruction
0x1 push
0x1 mov
0x1 add
0x1 cmp
0x1 je .label
0x8 Call (407e1d8)

Intel-PT Demo
// Check whether the CPU supports Intel-PT
$ grep intel_pt /proc/cpuinfo

// Run program with Intel PT
$ sudo perf record –e intel_pt// ./hello
$ sudo perf record –e intel_pt/mtc_period=0,cyc/ ./hello

// Decode
$ sudo perf report –D > trace.dump

Intel-PT
+ Can re-construct the sequence of instructions with fine-
grained time information
+ Can be used for fine-grained latency debugger
- Recording overhead 5-20%
- High volume of trace output (~100s MB / CPU / s)
- High decoding overhead

$ man perf-intel-pt
Magic Trace: Another tool to produce / analyze Intel-PT traces (with visualization)
https://github.com/janestreet/magic-trace

More Information on Intel-PT

Use Cases
- Latency Profiling: NSight[NSDI’22], magic-trace
- Introspecting dead code

Open Questions
- Can you minimize the overhead of decoding PT traces?
- Can you make decoding Intel PT more interactive?
- How Intel-PT can be used?

