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Need for kernel bypass in datacenters

* Using OS for microsecond-scale I/O has high overheads
* Cost of switching to kernel mode
* Cost of moving data back and forth
e Convoluted software paths

e OS thread schedulers + networking stacks cause high tail latency

 Large quantum (1-4 milliseconds) relative to target SLO (99.9% percentile <=
100us)

* Interrupt delivery + packet processing threads interrupt application threads
* Poor packet steering leads to lock contention, cache issues, load imbalance



Kernel Bypass

Control over hardware given directly to application

e Spin poll hardware queues
* New packets received, storage commands completed, etc

Eliminate interaction with OS
* Dedicated cores
* Pin memory, use hugepages
* Avoid syscalls

Conventional wisdom: avoid shared state across cores
* Use per-core hardware queues, lockless datastructures, etc

Examples: Arrakis, eRPC, IX, ZygOS, Shinjuku, Demikernel, [Shenango/Caladan]
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Drawbacks of Kernel Bypass

e Difficult to multiplex resources
* CPU cores and memory must be pinned
* |/O devices may not be usable by other applications
* Load variation makes this particularly challenging

* Programming model
* Loss of abstractions — working with raw devices
* No threading or synchronization primitives



CPU-efficient Kernel Bypass

* Performance goal:
* Provide low latency and high throughput for latency critical applications

* Efficiency goal:

* Run many applications on the machine to keep it productive
* Mix of latency critical and best-effort applications
e Can we keep a machines CPU cores 100% busy with useful work?
* Avoid overprovisioning resources to latency critical applications



Challenges

* Giving a kernel bypass app the right number of CPU cores
* Too few -> bad performance, high queueing delays
* Too many -> wasted resources

* How do we change core allocations for kernel bypass apps quickly and
efficiently?
* Slow mechanisms lead to high tail latency

* When packing together many applications on a machine, how do we
avoid interference?



Caladan: Main |deas

» Use fine grained core allocations for high CPU efficiency

* Avoid partitioning resources statically
e Also use core allocations to control CPU interference

* Provision just enough cores to avoid queueing

* Detect + react to application queueing before SLOs are violated
e 10 microseconds decision interval, can achieve SLOs in 100us range
* Provision cores when queues build; release them as queueing abates

* Monitor for causes and effects of CPU interference



Caladan’s Components

* Scheduler core spin polls: Task 1
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Caladan’s Components
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Caladan Runtimes

Lightweight user threading to balance work across active cores

e Per-core thread runqueues + directly-mapped hardware and
storage queues

* Thread queues are FIFO, and I/O queues are polled after
runqueues are emptied (run-to-completion).

* 1/O completions result in user thread wakeups

* When a core has no work in its runqueue or I/O queues, it steals
from other cores’ queues

FIFO work queues + run-to-completion + work stealing are all
important for keeping tail latency low
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Runtime Features

 Fast user threading (40ns thread switch time)

* TCP and UDP networking stacks; synchronous API

* Integration with SPDK for fast storage

* High-precision us-scale timers

* Synchronization primitives (mutex, condvar, etc)

e Read-Copy-Update (RCU) for read-mostly shared datastructures

Overall careful design and optimization of the runtime to make these
features work well



Detecting Queueing

Each runtime core shares a single cache line (64 bytes) with the
scheduler and keeps it updated with:

 current head pointers for runqueue + I/O queues

e timestamp of oldest thread in the queue

* timestamp indicating when current thread began executing

* additional data about the state of the thread

I/O queues instantiated in shared memory to allow scheduler to
monitor queueing



Lifetime of a runtime

The runtime creates one linux thread per-core called a kthread at
startup

* Each kthread blocks using a system call until the scheduler core
unblocks it

* When woken, a kthread searches for work: attempting to run local

user threads, poll/process completions from |/O queues, and steal
work from other cores

* If a thread is unable to find any work to do, it blocks again and waits
for the scheduler to unblock it



Top Level Core Allocation Algorithm

Every 10 microseconds:
foreach p in all procs:
foreach k in p.kthreads:
gdelay = ©
foreach g in [k.rung, k.netqg, k.storageq]:
# head element in queue is the oldest item

gdelay += current _time - g[qg.head].enqg _time;
if qdelay >= 10 microseconds:

add _core(p)

break



Policies about granting cores

 Best effort tasks never preempt latency-critical tasks
* Latency critical tasks can and do preempt latency critical tasks

 Latency critical tasks can preempt each other in certain circumstances
* For example, if one is using much more than its fair share

e Other constraints imposed when managing CPU interference
* Which cores and how many cores are available to application

* Try to select best core given cache locality and HT effects



Preempting a runtime core

Caladan leverages Linux signals to inform runtimes that they are about
to be preempted

Provide opportunity to cleanly park

* Running uthread placed back in runqueue so it can be stolen by other
kthreads

e Defers parking when runtime is in a critical section of code (e.g. for a spinlock)



Waking blocked kthreads

* Initial version:
* Shared eventfd file descriptor between kthread and scheduler

» kthread issues blocking read() on descriptor, scheduler calls write() to wake it
up when it desires

e | atest version:

e Custom kernel module (ksched) provides a better interface for the scheduler
core
* Allows batching of multiple wakeups using multicast IPIs
» Offloads scheduling work (including signal delivery) to remote cores
e Shared memory interface for issuing commands, monitoring idle completions, and more



Interference in Shared CPUs
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Managing Memory Bandwidth
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* Policy: keep total bandwidth
below target (~80%)

* Detecting Bandwidth Usage:

 DRAM controller counters
(checked every 10us)

* Per-core LLC miss counters for
task attribution

e Action: Throttle core count for
high bandwidth tasks



Managing Hyperthread Interference

 Pair different tasks on hyperthread sibling cores

* Many other systems disable hyperthreads all together, can be up to a 30% loss in machine
throughput

* Policy: Allow an LC request to execute on the same physical core as another task
for a fixed amount of time (THRESH_HT)

e Slowdown due to HT interference is bounded by THRESH _HT
* Positive effect on tail latency even when interference is not severe

* Action: Prevent any task from executing on the hyperthread twin core when an LC
request has exceeded THRESH_HT in execution time

* Generalized strategy from Elfen Scheduling [ATC ‘16]

e Caladan improves utilization by allowing arbitrary task pairings



Managing LLC Interference

LLC interference is the least extreme of the three types

No active policy to manage it

Instead, it is sufficient to rely on the top-level core allocation algorithm
to make up for any lost processing capacity



Implementation

Scheduler
* Optimized to run the full control loop every 10 ps
e 3500 LOC
e Currently supports Intel CPUs

KSCHED — Linux kernel module
* Leverages hardware multicast IPIs
e 530L0C

Runtime
 ~10,000 LOC
e Custom mlx5 driver for Mellanox ConnectX-5+ NICs

* Fast flow steering for fast core reallocation
* Exposes queueing signals to scheduler

Available at https://github.com/shenango/caladan



https://github.com/shenango/caladan
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Memcached and GC
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Colocating Many Tasks

e 3 Latency-Critical Tasks
* Memcached

* Flash storage service
* Silo

e 2 Best-Effort Tasks
e Swaptions (GC Task)
e Streamcluster

30 seconds, variable load and interference



Colocating Many Tasks
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Requirements for Applications

Applications must link with the runtime

* Export signals, balance work across active cores
e Realistic programming model
* Partial compatibility layer for some systems libraries

LC applications must expose internal parallelism to runtime
* Example: Memcached modified to spawn a thread per-connection

* Allows scheduler to observe delays
* Allows scheduler to mitigate delays with additional cores

No required changes for BE tasks



Overload Control
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Latency is an important metric in DC

- It directly impacts a user experience

- E.g. How long does it take to fetch a website?

- E.g. It determines how fast you decide whether to buy/sell
stocks

- Especially for interactive applications like Cloud gaming

-SLO (Service Level Objective) is often defined by
latency



Many efforts to reduce the latency
1. Fast Network: Network latency (~ 5 us)
2. Fast Storage: M.2 NVME SSD (~ 20 us)

3. In-memory operations: Memcached, Reddis, Ignite

@



Presenter Notes
Presentation Notes
Over the decade, network and storage get faster and in-memory operations become more prevalent. 
A single hop network latency is now less than 5 microseconds,
write operation on storage takes less than 20 microseconds,
And applications with in-memory operations like memcahced, reddis, or Apache Ignite become more popular.

Thanks to faster network and storage, and more prevalent in-memory operations, many RPCs now only take microseconds of request processing time in modern datacenters.



Trend: High Fan-out
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Presenter Notes
Presentation Notes
With microsecond-scale RPCs, datacenter applications are often implemented with multiple RPCs for better maintenance and reliability.
For example, a web service may have RPCs for accessing disaggregated memory, encryption, caching, and storage.
With such a fan-out traffic pattern, low tail latencies are especially important to provide low response time to the user.


Traditional Solution
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Causes of Server Overload

Load Imbalance Unexpected user traffic
Packet bursts Redirected traffic due to failure
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Presenter Notes
Presentation Notes
However, achieving low tail latency is challenging because of server overload.
RPC servers get overloaded by various reasons including load imbalance, unexpected user traffic, packet bursts, or redirected traffic due to failure.


What happens when the server is overloaded?
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Without overload control, server overload makes almost all
requests violate its SLO.


Presenter Notes
Presentation Notes
To see what happens in the performance without overload control, we measure the throughput and latency 
with different clients’ demand by varying the request generation rate 
from 1,000 clients.

We use the synthetic workload with exponential service time distribution with 10 us average.
Both throughput and latency are measured at the client-side.
Latencies are measured by the time from the request creation to the response arrival including client-side queueing delay.

If an RPC server is overloaded without proper overload control, [click]
throughput degrades because more CPUs are used for packet processing and request parsing; and less CPUs are used for business logic,  [click]
and tail latency and even median latency skyrockets. [click]
As a results, when the server is overloaded, even though the server is making some progress, almost all requests violate its SLO.


Overload Control Problem

We want to achieve low latency experienced by clients,
and high throughput as long as latency isn’'t harmed.
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Presenter Notes
Presentation Notes
However, achieving low tail latency is challenging because of server overload.
RPC servers get overloaded by various reasons including load imbalance, unexpected user traffic, packet bursts, or redirected traffic due to failure.


Ideal Overload Control

should keep request queue short, but not empty
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Presenter Notes
Presentation Notes
Because an empty request queue at the server wastes the resources and degrade throughput and large queue increases the RPC latency, [click]
to achieve both high throughput and low latency, an ideal overload control should keep the request queue short, but not empty at all times.


Ideal Overload Control

should inform clients about overload quickly

\d

4

.'"f \D[:]\
sle=n

Clients [l Request
6



Presenter Notes
Presentation Notes
Instead of building up the queue at the server side, the excess requests should be queued at the clients as the clients have more flexibility with the requests unlikely to be served within SLO.
With excess load queued at the clients, clients can learn the server overload quickly and react to it in proper way. 
For example, they can send those requests to another replica, or degrades the service quality by issuing less requests.



Strawman #1: Server-side AQM
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Presenter Notes
Presentation Notes
One strawman approach to achieve this is server-side AQM.
If the request queue grows large, the server can drop the requests and notify the clients


Strawman #1: Server-side AQM

The cost of packet processing is comparable to the
service time
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Presenter Notes
Presentation Notes
However, with microsecond-scale RPC, request drop is expensive because the cost of processing packets and parsing the requests is comparable to the request execution time.


Strawman #2: Client Rate limiting
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Presenter Notes
Presentation Notes
An alternative strawman design is client-side rate limiting. 
Based on the probed server status, clients can adjusts its request sending rate in a decentralized way.


Strawman #2: Client Rate limiting

Probing server status incur high message overhead
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Presenter Notes
Presentation Notes
However, it requires clients to have a fresh view of server’s status to react to the congestion without delay.
This leads to additional message overhead to probe the server status.
To make the problem worse, the message overhead increases with more number of clients.
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Presenter Notes
Presentation Notes
However, achieving low tail latency is challenging because of server overload.
RPC servers get overloaded by various reasons including load imbalance, unexpected user traffic, packet bursts, or redirected traffic due to failure.


Strawman #2: Client Rate limiting
Even with clients’ ideal rate, queue still can build up
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Presenter Notes
Presentation Notes
However, achieving low tail latency is challenging because of server overload.
RPC servers get overloaded by various reasons including load imbalance, unexpected user traffic, packet bursts, or redirected traffic due to failure.


Breakwater

Overload control scheme for ys-scale RPCs

Components Benefits

Coordinates requests with

1. Credit-based admission control | ~ . .
minimum delay

2. Demand speculation Minimizes message overhead

3. Delay-based AQM Ensures low tail latency



Presenter Notes
Presentation Notes
In this work, we present Breawater, an overload control scheme for microsecond scale RPCs which employs 
credit-based admission control to coordinate the requests with minimum delay, 
demand speculation to minimize message overhead, 
and delay-based AQM on short queue to ensure low tail latency at all times.


Breakwater’s benefits
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Presenter Notes
Presentation Notes
Breakwater effectively handles server overload with microsecond scale RPCs.
As shown in the figures below, it achieves 
[click] high throughput, [click] and low and bounded tail latency. [click]
In addition, Breakwater is scalable to a large number of clients.

Let me dive into the details how Breakwater achieves this.



Queueing delay as congestion signal
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Presenter Notes
Presentation Notes
In Breakwater, we use request queueing delay as a congestion signal.
Request queueing delay is measured by the elapsed time between when the request arrives and when the request starts to be processed.
If the queueing delay exceeds the target delay which is derived from SLO, Breakwater regards the server as overloaded.


Comp. #1: Credit-based admission control

Breakwater controls amount of incoming requests
with credits
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Presenter Notes
Presentation Notes
With request queueing delay as a congestion signal, Breakwater controls the amount of incoming requests using credit-based admission control

inspired by recent network congestion controls in datacenter.


Comp. #1: Credit-based admission control
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Presenter Notes
Presentation Notes
For credit-based admission control, each RPC server maintains a pool of credits


Comp. #1: Credit-based admission control

Breakwater controls amount of incoming requests

with credits
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Presenter Notes
Presentation Notes
And the number of credits in the credit pool is adjusted based on whether the server is overloaded or not.

For every RTT, if the queueing delay is less than the target, that is if the server is not overloaded, it additively increase the number of credits,
Otherwise, if the server is overloaded with queueing delay exceeding the target, it reduces the number of credits with scaled multiplicative factor.
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Presenter Notes
Presentation Notes
And the number of credits in the credit pool is adjusted based on whether the server is overloaded or not.

For every RTT, if the queueing delay is less than the target, that is if the server is not overloaded, it additively increase the number of credits,
Otherwise, if the server is overloaded with queueing delay exceeding the target, it reduces the number of credits with scaled multiplicative factor.
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Presenter Notes
Presentation Notes
And the number of credits in the credit pool is adjusted based on whether the server is overloaded or not.

For every RTT, if the queueing delay is less than the target, that is if the server is not overloaded, it additively increase the number of credits,
Otherwise, if the server is overloaded with queueing delay exceeding the target, it reduces the number of credits with scaled multiplicative factor.



Comp. #1: Credit-based admission control
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Presenter Notes
Presentation Notes
And the server maintains a list of clients who issues requests to the server.
[click] When a new client joins and wants to subscribe the credits, it sends a register message to the server.
[click]Upon receiving the register message, the server adds the client to the client list.


Comp. #1: Credit-based admission control

Breakwater controls amount of incoming requests

(Client 1.
with credits en

Client 2
Client 3

o @l Client 4

(—_]

Server

il

Clients O Credit [] Request [] Response
13


Presenter Notes
Presentation Notes
If a server has available credits in its credit pool, it distributes the credits to the clients.


Comp. #1: Credit-based admission control

Breakwater controls amount of incoming requests

(Client 1.
with credits en

Client 2
Client 3

o @l Client 4

- 0 (—)

Server

il

Clients O Credit [] Request [] Response
13


Presenter Notes
Presentation Notes
The clients are only allowed to send request with credits.
When the server receives the request, it enqueues the request to the request queue; and process it in first-come first-served manner.
Once the server starts to process a request, it runs to completion.
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Presenter Notes
Presentation Notes
After the request is processed, the response is sent back to the clients. 


Comp. #1: Credit-based admission control
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Presenter Notes
Presentation Notes
When a client has no further requests and wants to unsubscribe the credits, it sends deregister message to the server and the server removes the client from the client list.


Impact of Credit-based Admission Control

Credit-based admission control has lower and bounded
tail latency but lower throughput.
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Presenter Notes
Presentation Notes
As a result, even though naïve credit-based admission control achieves [click] lower and bounded tail latency thanks to per-request coordination with credits,
[click]
it cannot achieve high throughput because of the message overhead. 

Then, how can we eliminate the demand messages while taking advantages of credit-based admission control?


Demand Message Overhead
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Presenter Notes
Presentation Notes
Credit-based admission control can effectively bound the number of requests in the request queue 
with explicit scheduling by credits.
However, this naïve credit-based admission control has one significant drawback. [click]
It requires the server to know how much demand each client has; in order to decide to which client and how many credits the server has to issue.

[click]
This leads to additional demand messages from clients to server in order to synchronize up-to-date demand information.
Those demand messages introduce additional message overhead to the server which is significant 
especially with microsecond-scale RPCs because the clients’ demand changes frequently as they may give up a request or decide to send a request to another replica.
To make the matter worse, the message overhead increases as the number of clients increases.
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Presenter Notes
Presentation Notes
Credit-based admission control can effectively bound the number of requests in the request queue 
with explicit scheduling by credits.
However, this naïve credit-based admission control has one significant drawback. [click]
It requires the server to know how much demand each client has; in order to decide to which client and how many credits the server has to issue.

[click]
This leads to additional demand messages from clients to server in order to synchronize up-to-date demand information.
Those demand messages introduce additional message overhead to the server which is significant 
especially with microsecond-scale RPCs because the clients’ demand changes frequently as they may give up a request or decide to send a request to another replica.
To make the matter worse, the message overhead increases as the number of clients increases.
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Presenter Notes
Presentation Notes
Credit-based admission control can effectively bound the number of requests in the request queue 
with explicit scheduling by credits.
However, this naïve credit-based admission control has one significant drawback. [click]
It requires the server to know how much demand each client has; in order to decide to which client and how many credits the server has to issue.

[click]
This leads to additional demand messages from clients to server in order to synchronize up-to-date demand information.
Those demand messages introduce additional message overhead to the server which is significant 
especially with microsecond-scale RPCs because the clients’ demand changes frequently as they may give up a request or decide to send a request to another replica.
To make the matter worse, the message overhead increases as the number of clients increases.


Piggybacking Demand Information

Breakwater piggybacks clients’ demand

(" )
information into requests.
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Presenter Notes
Presentation Notes
In Breakwater, instead of maintaining full knowledge on clients’ demand with demand message, [click]


Piggybacking Demand Information

Breakwater piggybacks clients’ demand - \
information into requests.
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Presenter Notes
Presentation Notes
All demand information is piggybacked to the requests, and the server keeps track of clients’ demand based on those piggybacked demand information.


Comp. #2: Demand Speculation

Breakwater speculate clients’ demand to minimize , \
message overhead
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Presenter Notes
Presentation Notes
However, because demand information can be delivered only with requests, the server may have stale information of some clients.

Even though the demand information for some clients are stale, the server distributes the credits based on it. 
Since clients’ demand is not perfectly synchronized, clients may receive more credits than its demand.


Comp. #2: Demand Speculation

Breakwater speculate clients’ demand to minimize , \
message overhead
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Presenter Notes
Presentation Notes
If a client receives more credits than necessary, it holds those credits for the future use.
If the server still has available credit after distributing credits based on its latest demand information, 




Comp. #2: Demand Speculation

Breakwater speculate clients’ demand to minimize , \
message overhead
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Presenter Notes
Presentation Notes
It chooses random clients among clients who “used up” all the credits; and issues credits to them speculating that the clients may have new demand since last advertisement.

Demand speculation is our key design choice to provide scalability to a large number of clients with minimal message overhead.


Impact of Adding Demand Speculation

Demand speculation improves throughput with
higher tall latency
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Presenter Notes
Presentation Notes
With demand speculation, [click] Breakwater can achieve high throughput, [click]
but with higher tail latency 

What makes the tail latency higher and how can we prevent it?


Credit Overcommitment

Server issues more credit than the number of - N
requests it can accomodate
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Presenter Notes
Presentation Notes
With piggybacking demand information and demand speculation, the clients with no demand may have unused credits .
Because those unused credit do not increase the queueing delay at the server in RTT, server decides to issue more credits to other clients.

This leads the server to issue more credits than it can accommodate, which we refer credit overcommitment.



Incast Causing Long Queue

With credit overcommitment, multiple requests - N
may arrive at the server at the same time
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Presenter Notes
Presentation Notes
With credit overcommitment, multiple clients can send requests to the server at the same time in the future, causing incast.

When incast happens, tail latency becomes higher as request queueing delay increases.


Comp. #3: Delay-based AQM

To ensure low tall latency, the server drops - \
requests if queueing delay exceeds threshold.
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Presenter Notes
Presentation Notes
In Breakwater, to ensure low tail latency even when incast happens, the server drops the request if the queueing delay exceeds the drop threshold. 

Because Breakwater uses delay-based AQM as a safety net by dropping the requests only when the request queue grows large with incast, 
It rarely drops the requests during operation.


Comp. #3: Delay-based AQM

To ensure low tall latency, the server drops - \
requests if queueing delay exceeds threshold.
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Presenter Notes
Presentation Notes
For the dropped request, the server sends the reject message immediately to notify the clients of rejected request. 
After receiving the reject message, the client can decide what to do with it. For example they can retransmit or give up the request.


Impact of Adding Delay-based AQM

Breakwater achieves high throughput and low and
bounded tall latency at the same time
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Presenter Notes
Presentation Notes
Equipped with all of three key component, credit-based admission control, demand speculation, and delay-based AQM,
Breakwater achieves [click] high throughput [click] while maintaining low and bounded tail latency.


Evaluation

Testbed Setup
- xI170 in Cloudlab
- 11 machines are connected to a single switch
- 10 client machines / 1 server machine
- Implementation on Shenango as a RPC layer

Synthetic Workload
- Clients generate request with open-loop Poisson process
- Requests spin-loops specified amount of time at server
- Exponential service time distribution with 10us average
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Presenter Notes
Presentation Notes
To evaluate Breakwater, we constructed testedbed in Cloudlab.
We implemented Breakwater as an RPC library on top of TCP transport layer over Shenango.
We use the synthetic workload where an RPC spin-loops specified amount of time at the server.



Evaluation

(1) Does Breakwater achieves high throughput and low tail
latency even with demand spikes?

(2) Does Breakwater provides fast notification for the rejected
requests?

(3) Is Breakwater scalable to many clients?

Baselines:
DAGOR
priority-based overload control used in WeChat
SEDA
adaptive overload control for staged event-driven

architecture .,


Presenter Notes
Presentation Notes
Through the evaluation we answer three key questions.
Does breakwater achieves high throughput and low tail latency even with demand spikes
Does breakwater provides fast notification for the rejected requests?
Is Breakwater scalable to many clients?

We compare Breakwater’s performance with two existing state-of-the-art overload control mechanisms: DAGOR and SEDA.
DAGOR is a priority-based overload control scheme used in WeChat microservices, 
And SEDA is an adaptive overload control for staged event-driven architecture which rate-limits the clients based on measured response time.


High Goodput with Fast Convergence

—— Breakwater — DAGOR —— SEDA Load |deal
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Breakwater converges to higher goodput 25x faster than

DAGOR and 79x faster than SEDA.
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Presenter Notes
Presentation Notes
To compare the Breakwater to existing approaches, we define a metric called goodput.
Goodput represents the rate of responses whose latency is less than SLO. 

To see how each overload control behaves with sudden demand shift, we generate the load from 1,000 clients varying the per-client demand over time.
When the clients’ demand suddenly exceed the server capacity by 40% at time 4, Breakwater instantly converges within less than 20 ms while both DAGOR and SEDA experience goodput collapse.
DAGOR and SEDA take a half second and 1.6 seconds to recover from congestion collapse, respectively.
Even after the convergence, Breakwater achieves 6% higher steady-state goodput than DAGOR and 5% higher than SEDA. 


Low and Bounded Tail Latency
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Breakwater maintains low tail latency even with load

spikes.
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Presenter Notes
Presentation Notes
The goodput collapse of DAGOR and SEDA stems from long queueing delay caused by request queue build up.
During the congestion collapse, almost all requests violate its SLO with SEDA and DAGOR.
By contrast, Breakwater maintains its tail latency around SLO even when the clients’ demand suddenly exceeds the server capacity.


Fast Notification of Reject
—— Breakwater —— DAGOR

(kreqs/s)

0 2 4 6 8 10
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Breakwater notifies rejected request to clients before
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Mean Reject Demand
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Presenter Notes
Presentation Notes
To demonstrate how fast Breakwater notifies request drop to the client, we measure the reject delay, 
the time from request issue 
to reject message arrival 
at the client.

Breakwater delivers reject messages to the client before violating its SLO even when the server is overloaded so that the clients can do something for the rejected request.

On the other hand, DAGOR’s rejection message is delayed up to a few hundres of milliseconds during congestion collapse, which make clients hard to distinguish whether the request is taking long time to process or the server is congested.
Note that as SEDA doesn’t drop the request at the server, there is no reject messages for SEDA in normal operation.



Scalability to Many Clients

B Breakwater ll DAGOR B SEDA
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Breakwater easily scales to 10,000 clients.
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Presenter Notes
Presentation Notes
To demonstrate scalability to a large number of clients, with fixed clients’ demand of twice as capacity, we vary the number of clients and measure the goodput of three overload controls.

Even though all three systems experience goodput degradation as the number of clients increases, Breakwater demonstrates the least degradation achieving 10 percent higher goodput compared to DAGOR and SEDA with 10,000 clients.

More experiment results including the one with real application and various workloads are available in the paper.


Conclusion

« Breakwater is a server-driven credit-based overload
control system for us-scale RPCs

* Breakwater's key components include
(1) Credit-based admission control

(2) Demand speculation
(3) Delay-based AQM

* Qur evaluation shows that Breakwater achieves
(1) Low & bounded tail latency with high throughput
(2) Fast notification for a rejected request
(3) Scalability to many clients
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Presenter Notes
Presentation Notes
Let me conclude the talk.
Breakwater is a server-driven credit-based overload control devised for microsecond scale RPCs
With credit-based admission control, demand speculation, and delay-based AQM, Breakwater achieves low and bounded tail latency with high throughput, fast notification for a rejected request, and scalability to many clients.

We believe that Breakwater is an important step towards the overload control over more complex datacenter applications with multiple hierarchy of microservices.



Open Questions

- Can you think of better congestion signal?

-  What if other than CPU is the bottleneck?

- What if we use processor sharing model instead of run-to-
completion?

-  What would be the corner case where Breakwater is not efficient?
Can you make it more efficient?

- What infrastructure can you build on top of Breakwater?
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Presenter Notes
Presentation Notes
Let me conclude the talk.
Breakwater is a server-driven credit-based overload control devised for microsecond scale RPCs
With credit-based admission control, demand speculation, and delay-based AQM, Breakwater achieves low and bounded tail latency with high throughput, fast notification for a rejected request, and scalability to many clients.

We believe that Breakwater is an important step towards the overload control over more complex datacenter applications with multiple hierarchy of microservices.



Feel free to play around with it!

Github:
http://inhocho89.github.io/breakwater

Full paper:
https://inhocho89.github.io/papers/osdi20overload.pdf
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Presenter Notes
Presentation Notes
Let me conclude the talk.
Breakwater is a server-driven credit-based overload control devised for microsecond scale RPCs
With credit-based admission control, demand speculation, and delay-based AQM, Breakwater achieves low and bounded tail latency with high throughput, fast notification for a rejected request, and scalability to many clients.

We believe that Breakwater is an important step towards the overload control over more complex datacenter applications with multiple hierarchy of microservices.


http://inhocho89.github.io/breakwater
https://inhocho89.github.io/papers/osdi20overload.pdf
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Intel-PT

Suppose you want to record all the instruction executed
by the CPU

Hardware supported Process Trace
- It records whether a branch is Taken(T)/Not Taken (NT)
for “every” branch during program execution



Intel-PT Example
Instructions

= push
mov
add
cmp
je .label
mov
label
call (edx)



Intel-PT Example
Instructions

= push
mov
add I CYC Ox1 — Timing Information
cmp T - PSB: TSC
: - [Default] MTC: from hardware
je .label CYC Ox38 crystal clock (CTC)
mov 0x407e1d8 - CYC: Cycle-accurate Timer
Jlabel

call (edx)



Intel-PT Example
Instructions

= push
add + CYC Ox1
cmp T — Branch Information
jne %eax .label CYC 0x8 - Taken / Not Taken
mov 0x407e1d8
Jlabel

call (%edx)



Intel-PT Example
Instructions

=% push
add CYC Ox1
cmp + T
jne %eax .label CYC Ox8
mov 0x407e1d8 — Target IP Address
Jlabel

call (%edx)



Intel-PT Example
Instructions

= push
mov
add
cmp
je .label
mov
label

call (edx)
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CYC Ox1

T

CYC Ox38
0x407e1d8

-—)

Cycle_instruction

Ox1
Ox1
Ox1
Ox1
Ox1
Ox8

push

mov

add

cmp

je .label

Call (407e1d8)



Intel-PT Demo

// Check whether the CPU supports Intel-PT
$ grep intel pt /proc/cpuinfo

// Run program with Intel PT
$ sudo perf record -e intel pt// ./hello
$ sudo perf record -e intel pt/mtc period=0,cyc/ ./hello

// Decode
$ sudo perf report -D > trace.dump



Intel-PT

+ Can re-construct the sequence of instructions with fine-
grained time information

+ Can be used for fine-grained latency debugger

- Recording overhead 5-20%

- High volume of trace output (~100s MB / CPU / s)

- High decoding overhead

More Information on Intel-PT
$ man perf-intel-pt

Magic Trace: Another tool to produce / analyze Intel-PT traces (with visualization)
https://github.com/janestreet/magic-trace



Use Cases

- Latency Profiling: NSight[NSDI'22], magic-trace
- Introspecting dead code



Open Questions

- Can you minimize the overhead of decoding PT traces?
- Can you make decoding Intel PT more interactive?
- How Intel-PT can be used?



