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Logistics

• Sign up for paper presentations
• Due date has been updated to Sunday (9/18) to give more time

• If you haven’t already, create a CloudLab account



Plan for today

1. Dune:
- Exposes privileged CPU features, normally used to build kernels, 
safely to userspace

2. IO Virtualization:
- Allows programs to communicate with I/O hardware (e.g.,

networking and storage) directly and safely (not violating memory
isolation)

3. AIFM:
- Application-integrated far memory



Recap: Process Architecture
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Recap: VM Architecture

• What if the process abstraction looked just like HW?

Hardware

OS (VMM)
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Guest OS

Virtual HW

Guest OS
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Comparing a process and HW

Process
• Non privileged registers and 

instructions
• Virtual memory
• Signals
• File system and sockets

Hardware
• All registers and instructions
• Virt. mem. and MMU
• Traps and interrupts
• I/O devices and DMA



Can a CPU be virtualized?

Requirements to be “virtualizable” defined by Popek and Goldberg in 
1974:
1. Fidelity: Software on the VMM executes identically to its 

execution on hardware, barring timing effects. 
2. Performance: An overwhelming majority of guest instructions are 

executed by the hardware without the intervention of the VMM. 
3. Safety: The VMM manages all hardware resources.



Memory virtualization
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Memory virtualization
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Why can’t the VMM let the VM guest kernel 
program the page table directly?



Trap-and-emulate is not possible on x86

Two problems:
1. Some instructions behave differently in user mode instead of 

trapping
2. Some registers leak state that reveals if the CPU is running in 

usermode
• Violates fidelity property
• Risc-V doesn’t have this problem!



Two possible solutions

1. Binary translation
• Rewrite offending instructions to behave correctly

2. Hardware virtualization
• CPU maintains shadow state internally and directly executes privileged guest 

instructions



Intel VT-x

• Makes x86 hardware “virtualizable” under Popek and Goldberg 
definition
• Goal: Direct execution of most privileged instructions
• Introduces two CPU modes, kind of like ring protection
• VMX Root Mode: For running VMM (host)
• VMX Non-root Mode: For running VMs (guest)
• But each mode has its own rings (user/kernel)

• In-memory structure called VMCS stores privileged register state and 
control flags



Intel VT-x
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VMX Non-Root Mode
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VMX Non-Root Mode
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VM Enter and VM Exit

• Transitions between VMX Root Mode and VMX Non-root Mode
• VM Exit
• VMCALL instruction, EPT Page Faults, some trap and emulate (configured in 

VMCS)

• VM Enter
• VMLAUNCH instruction: Enter VMX Non-root Mode for a new VMCS
• VMRESUME instruction: Enter VMX Non-root Mode for the last VMCS (faster)

• Typical VM Exit/Enter is ~200 cycles on modern HW



Intel EPT (nested paging)

• Goal: Direct execution of guest page table interactions
• Reads and write to page table in memory
• mov %eax, %cr3, INVLPG, etc.

• Idea: Maintain two layers of paging translation
• Normal page table: Guest-virtual to guest-physical
• EPT: guest-physical to host-physical
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Intel EPT
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Q: What’s faster EPT or Shadow Page Tables?



Big picture

• Direct execution reduces overhead
• Avoids VM exits, trap-and-emulate, binary translation

• Enabled by microarchitectural changes:
• Intel VT-x: direct execution of most privileged instructions (e.g. IDT, GDT, ring 

protection, EFLAG, etc.)
• Intel EPT: direct execution of page table manipulation



Operating systems today
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What if you could give a process access to 
raw hardware?
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Could build new OS on top of Linux
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Key idea: Using Linux means access through system calls



But still must maintain process isolation
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Dune

• Key Idea: Use VT-x, EPT, etc. to support Linux processes instead of 
virtual machines
• Dune is loadable kernel module, makes it possible for an ordinary 

Linux process to switch to “Dune mode”
• Dune mode processes can run along side ordinary processes.
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A dune process

• Is still a process
• has memory, can make Linux system calls, is fully isolated, etc.

• But isolated with VT-x Non-root mode
• Rather than with CPL=3 and page table protections

• memory protection via EPT
• Dune configures EPT so process can only access the same physical pages it 

would normally have access to



Why isolate a process with VT-x?

• Process can access all of Linux environment while also directly 
executing most privileged instructions
• User code now runs at CPL 0
• Process can manage its own page table via %CR3
• Fast exceptions (e.g. page faults) via shadow IDT
• Kernel crossings eliminated

• Can run sandboxed code at CPL 3
• So process can act like a kernel!



SR-IOV + IOMMU

• Goal: Allows direction execution of I/O device access
• Challenge #1: How to partition a single device into multiple instances
• Challenge #2: How to prevent DMA from overwriting memory 

belonging to VMM or another guest



IOMMU
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Major challenges in practice

1. Memory: Traditionally must be pinned (cannot be swapped)
• Pinning and unpinning is very expensive

2. Completions: Must be busy-polled (wastes CPU) or interrupt 
driven (high overhead)
• Caladan offers a solution to this problem (next week)

3. Scalability: SR-IOV is HW intensive, IOTLB is limited in size
• Today’s IO devices degrade in performance beyond a certain scale



Conclusion

• VT-x and EPT enable direct execution of guest instructions
• Dune implements processes with VT-x and EPT rather than ordinary 

ring protection



AIFM: High-Performance, 
Application-Integrated Far Memory
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In-Memory Applications
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Data Analytics

Database

Web Caching

Graph Processing



Memory Is Inelastic

ØLimited by the server physical boundary.
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Memory Is Inelastic

• Limited by the server physical boundary.
ØApplications cannot overcommit memory.
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Memory Is Inelastic

• Limited by the server physical boundary.
• Applications cannot overcommit memory.

ØExpensive solution: overprovision memory for peak usage.
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Recent Far-Memory Systems

ØLeverage the idle memory of remote servers.
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Recent Far-Memory Systems

• Leverage the idle memory of remote servers.
ØEnabler: narrowed Net/DRAM performance gap.
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Far MemLocal Mem

Recent Far-Memory Systems

• Leverage the idle memory of remote servers.
• Enabler: narrowed Net/DRAM performance gap.
ØBuilt on top of OS paging (swap).

8

Local Server

Net

Remote Server

Net



state-of-the-art, 50% local mem
state-of-the-art, 25% local mem
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Why OS-Paging Systems Suffer?

ØGoal: transparent, no app code modification.
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Why OS-Paging Systems Suffer?

• Goal: transparent, no app code modification.
• Require to use OS to manage virtual memory pages.

‒ Semantic gap.
‒ High kernel overheads.
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Semantic Gap (in Paging Systems)

ØPage granularity. Example: R/W amplification.
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Semantic Gap (in Paging Systems)
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Semantic Gap (in Paging Systems)
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• Page granularity. Example: R/W amplification.

ØOS lacks app knowledge. Example: hard to prefetch.

Page

OS A sequence of random memory accesses.

App



High Kernel Overheads (in Paging Systems)
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High Kernel Overheads (in Paging Systems)
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High Kernel Overheads (in Paging Systems)
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• Use expensive page faults.
ØUse polling for in-kernel net I/O à burn CPU cycles. 
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Design Space
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Existing OS
paging systems
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Design Space
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Perf.

Manually manage 
objects

Existing OS
paging systems

19



Design Space

Transparency

Perf.
Existing OS
paging systems

?
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Design Space

Transparency

Perf.
Existing OS
paging systems

AIFM (this work)
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How Does AIFM Perform?

state-of-the-art, 50% local mem
state-of-the-art, 25% local mem
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AIFM’s Approach

ØAIFM: Application-Integrated Far Memory.
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AIFM’s Approach

ØAIFM: Application-Integrated Far Memory.

Existing OS Paging Systems AIFM

• Semantic gap
• Page granularity
• No data structure knowledge

• High kernel overheads
• Page faults on accessing remote objs
• Busy polling for net I/O
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• Use data structure lib API to bridge gap
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• Object granularity
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AIFM’s Approach

ØAIFM: Application-Integrated Far Memory.

Existing OS Paging Systems AIFM

• Semantic gap
• Page granularity
• No data structure knowledge

• High kernel overheads
• Page faults on accessing remote objs
• Busy polling for net I/O

• Use data structure lib API to bridge gap
• Object granularity
• Full data structure knowledge

• Userspace runtime that swaps in/out objs
• Function calls on accessing remote objs
• Context switch for net I/O
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AIFM in Action
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1. Remoteable Data Structure Library

32

Remoteable
Data Structure

Local Memory

Far Memory

library APIApp User-
Level Thread 0

ØSolved challenge: semantic gap.



1. Remoteable Data Structure Library
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1. Remoteable Data Structure Library
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1. Remoteable Data Structure Library
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2. Userspace Runtime
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2. Userspace Runtime
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2. Userspace Runtime
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3. Pauseless Evacuator
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3. Pauseless Evacuator
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3. Pauseless Evacuator
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3. Pauseless Evacuator
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3. Pauseless Evacuator
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4. Remote Agent

44

Obj 0Ptr 0

Ptr 1

Ptr N

Pauseless
Evacuator

Remoteable
Data Structure

App  Semantics

Prefetcher

Local Memory

Far Memory

Obj 1 Obj N…Remote 
Agent

library APIApp User-
Level Thread 0

App User-
Level Thread 1

YieldYield

Light Operations

…

ØSolved challenge: network BW < DRAM BW.



4. Remote Agent
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4. Remote Agent
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Sample Code

std::unordered_map<key_t, int> hashtable;
std::array<LargeData> arr;

LargeData foo(std::list<key_t> &keys_list) {
int sum = 0;
for (auto key : keys_list) {

sum += hashtable.at(key);
}

LargeData ret = arr.at(sum);
return ret;

}
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Sample Code

RemHashTable<key_t, int> hashtable;
RemArray<LargeData> arr;

LargeData foo(RemList<key_t> &keys_list) {
int sum = 0;
for (auto key : keys_list) {

sum += hashtable.at(key);
}

LargeData ret = arr.at(sum);
return ret;

}
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Sample Code

RemHashTable<key_t, int> hashtable;
RemArray<LargeData> arr;

LargeData foo(RemList<key_t> &keys_list) {
int sum = 0;
for (auto key : keys_list) {

DerefScope scope;
sum += hashtable.at(key, scope);

}
DerefScope scope;
LargeData ret = arr.at(sum, scope);
return ret;

}
49

Ensure the objects being accessed 
will not be moved by the evacuator.



Sample Code
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RemHashTable<key_t, int> hashtable;
RemArray<LargeData> arr;

LargeData foo(RemList<key_t> &keys_list) {
int sum = 0;
for (auto key : keys_list) {

DerefScope scope;
sum += hashtable.at(key, scope);

}
DerefScope scope;
LargeData ret = arr.at</*don’t cache*/ true>(sum, scope);
return ret;

}



Sample Code

RemHashTable<key_t, int> hashtable;
RemArray<LargeData> arr;

LargeData foo(RemList<key_t> &keys_list) {
int sum = 0;
for (auto key : keys_list) {

DerefScope scope;
sum += hashtable.at(key, scope);

}
DerefScope scope;
LargeData ret = arr.at</*don’t cache*/ true>(sum, scope);
return ret;

}
51

Prefetch list data. 



Sample Code

RemHashTable<key_t, int> hashtable;
RemArray<LargeData> arr;

LargeData foo(RemList<key_t> &keys_list) {
int sum = 0;
for (auto key : keys_list) {

DerefScope scope;
sum += hashtable.at(key, scope);

}
DerefScope scope;
LargeData ret = arr.at</*don’t cache*/ true>(sum, scope);
return ret;

}
52

Prefetch list data. 

Cache hot KV pairs.



Sample Code

RemHashTable<key_t, int> hashtable;
RemArray<LargeData> arr;

LargeData foo(RemList<key_t> &keys_list) {
int sum = 0;
for (auto key : keys_list) {

DerefScope scope;
sum += hashtable.at(key, scope);

}
DerefScope scope;
LargeData ret = arr.at</*don’t cache*/ true>(sum, scope);
return ret;

}

Prefetch list data. 

Cache hot KV pairs.

Avoid polluting local mem.
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Implementation

ØImplemented 6 data structures.
• Array, List, Hashtable, Vector, Stack, and Queue.
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Implementation

• Implemented 6 data structures.
• Array, List, Hashtable, Vector, Stack, and Queue.

• AIFM runtime is built on top of Shenango [NSDI’ 19]
• TCP-based far memory backend.
ØLoC: 6.5K (core runtime) + 5.5K (data structures) + 0.8K (Shenango) 
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Evaluation

ØSetup: 1 compute server + 1 far memory server, 25 GbE.
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Evaluation

• Setup: 1 compute server + 1 far memory server, 25 GbE.
• How does AIFM

Ø… perform on applications with different compute intensities?
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Evaluation

• Setup: 1 compute server + 1 far memory server, 25 GbE.
• How does AIFM
• … perform on applications with different compute intensities?
• … compare to the local-only (ideal) system?
Ø… compare to the state-of-the-art paging system, Fastswap [EuroSys’ 20]?
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Performance on Different Compute Intensities
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Performance on Different Compute Intensities
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Converged to 1 at ~50 μs
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Performance on Different Compute Intensities
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Performance on Different Compute Intensities
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Performance on Different Compute Intensities
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Performance on Different Compute Intensities
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Synthetic Web Frontend
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Synthetic Web Frontend

User Req
Remoteable
Hashtable
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Array

Compress
& Encrypt

Ø Avoid polluting local mem
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Web profile (8K)

• Object-level caching.



Synthetic Web Frontend
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Synthetic Web Frontend
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NYC Taxi Analysis (C++ DataFrame)

• DataFrame: data analytical framework, similar to Python Pandas.
• Real Kaggle workload: use DataFrame to explore trip dimensions.
• Working set size = 31 GB.
• Modify 1.4K LoC (out of 24.3K LoC), five person-days.

• Relatively low compute intensity à Unable to hide far-mem latency.
ØKeep complex operations locally and offload very light operations.
• Significantly reduce expensive data transfer over network.
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Conclusion

• AIFM: Application-Integrated Far Memory.
• Key idea: swap memory using a userspace runtime.
• Data Structure Library: captures application semantics.
• Userspace Runtime: efficiently manages objects and memory.

• Achieves 13X end-to-end speedup over Fastswap.
ØCode released at https://github.com/AIFM-sys/AIFM
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