
6.5810: Virtualization + Dune
Adam Belay <abelay@mit.edu>

1

Logistics

• Sign up for paper presentations
• Due date has been updated to Sunday (9/18) to give more time

• If you haven’t already, create a CloudLab account

Plan for today

1. Dune:
- Exposes privileged CPU features, normally used to build kernels,
safely to userspace

2. IO Virtualization:
- Allows programs to communicate with I/O hardware (e.g.,

networking and storage) directly and safely (not violating memory
isolation)

3. AIFM:
- Application-integrated far memory

Recap: Process Architecture

Hardware

OS

vi gcc firefox

Recap: VM Architecture

• What if the process abstraction looked just like HW?

Hardware

OS (VMM)

vi gcc firefox

Guest OS

Virtual HW

Guest OS

Virtual HW

Comparing a process and HW

Process
• Non privileged registers and

instructions
• Virtual memory
• Signals
• File system and sockets

Hardware
• All registers and instructions
• Virt. mem. and MMU
• Traps and interrupts
• I/O devices and DMA

Can a CPU be virtualized?

Requirements to be “virtualizable” defined by Popek and Goldberg in
1974:
1. Fidelity: Software on the VMM executes identically to its

execution on hardware, barring timing effects.
2. Performance: An overwhelming majority of guest instructions are

executed by the hardware without the intervention of the VMM.
3. Safety: The VMM manages all hardware resources.

Memory virtualization

Host Page Table

Host
Virtual

Address

Host
Physical
Address

Memory virtualization

Host Page Table

Host
Virtual

Address

Host
Physical
Address

VMM Map

Guest
Virtual

Address

Host
Physical
Address

Guest PT

Guest
Physical
Address

Shadow Page Table

Guest
Virtual

Address

Host
Physical
Address

Why can’t the VMM let the VM guest kernel
program the page table directly?

Trap-and-emulate is not possible on x86

Two problems:
1. Some instructions behave differently in user mode instead of

trapping
2. Some registers leak state that reveals if the CPU is running in

usermode
• Violates fidelity property
• Risc-V doesn’t have this problem!

Two possible solutions

1. Binary translation
• Rewrite offending instructions to behave correctly

2. Hardware virtualization
• CPU maintains shadow state internally and directly executes privileged guest

instructions

Intel VT-x

• Makes x86 hardware “virtualizable” under Popek and Goldberg
definition
• Goal: Direct execution of most privileged instructions
• Introduces two CPU modes, kind of like ring protection
• VMX Root Mode: For running VMM (host)
• VMX Non-root Mode: For running VMs (guest)
• But each mode has its own rings (user/kernel)

• In-memory structure called VMCS stores privileged register state and
control flags

Intel VT-x

VMX Non-Root Mode

VMX Root Mode

CPL 3

CPL 0IDTGDT

%CR0-8 %EFLAG

CPL 3

CPL 0IDTGDT

%CR0-8 %EFLAG

VMCS

CONTROL

GUEST STATE

HOST STATE

VMX Non-Root Mode

VMX Root Mode

CPL 3

CPL 0IDTGDT

%CR0-8 %EFLAG

CPL 3

CPL 0IDTGDT

%CR0-8 %EFLAG

VMCS

CONTROL

GUEST STATE

HOST STATE

Intel VT-x: VM Enter

VM Enter

VMX Non-Root Mode

VMX Root Mode

CPL 3

CPL 0IDTGDT

%CR0-8 %EFLAG

CPL 3

CPL 0IDTGDT

%CR0-8 %EFLAG

VMCS

CONTROL

GUEST STATE

HOST STATE

Intel VT-x: VM Exit

VM Exit

VM Enter and VM Exit

• Transitions between VMX Root Mode and VMX Non-root Mode
• VM Exit
• VMCALL instruction, EPT Page Faults, some trap and emulate (configured in

VMCS)

• VM Enter
• VMLAUNCH instruction: Enter VMX Non-root Mode for a new VMCS
• VMRESUME instruction: Enter VMX Non-root Mode for the last VMCS (faster)

• Typical VM Exit/Enter is ~200 cycles on modern HW

Intel EPT (nested paging)

• Goal: Direct execution of guest page table interactions
• Reads and write to page table in memory
• mov %eax, %cr3, INVLPG, etc.

• Idea: Maintain two layers of paging translation
• Normal page table: Guest-virtual to guest-physical
• EPT: guest-physical to host-physical

EPT

Guest
Virtual

Address

Host
Physical
Address

PT

Guest
Physical
Address

Intel EPT

MMU

TLB

Page Walker

PGTBL

PGDIR

PGDIR

EPGTBL

PGDIR

PGDIR

Guest Kernel

VMM

GVA | HPA
GVA | HPA
GVA | HPA

…

Guest VA -> Guest PA

Guest PA -> Host PA

Q: What’s faster EPT or Shadow Page Tables?

Big picture

• Direct execution reduces overhead
• Avoids VM exits, trap-and-emulate, binary translation

• Enabled by microarchitectural changes:
• Intel VT-x: direct execution of most privileged instructions (e.g. IDT, GDT, ring

protection, EFLAG, etc.)
• Intel EPT: direct execution of page table manipulation

Operating systems today

22

App

Kernel

Hardware

App App

What if you could give a process access to
raw hardware?

23

1. Access to full hardware
capabilities

2. Access to all existing Linux
abstractions

App

Kernel

Hardware

Could build new OS on top of Linux

24

1. Access to full hardware
capabilities

2. Access to all existing Linux
abstractions

Custom Kernel

Kernel

Hardware

AppApp

Key idea: Using Linux means access through system calls

But still must maintain process isolation

25

1. Access to full hardware
capabilities

2. Access to all existing Linux
abstractions

Custom Kernel

Kernel

Hardware

AppApp

Dune

• Key Idea: Use VT-x, EPT, etc. to support Linux processes instead of
virtual machines
• Dune is loadable kernel module, makes it possible for an ordinary

Linux process to switch to “Dune mode”
• Dune mode processes can run along side ordinary processes.

26

A dune process

• Is still a process
• has memory, can make Linux system calls, is fully isolated, etc.

• But isolated with VT-x Non-root mode
• Rather than with CPL=3 and page table protections

• memory protection via EPT
• Dune configures EPT so process can only access the same physical pages it

would normally have access to

Why isolate a process with VT-x?

• Process can access all of Linux environment while also directly
executing most privileged instructions
• User code now runs at CPL 0
• Process can manage its own page table via %CR3
• Fast exceptions (e.g. page faults) via shadow IDT
• Kernel crossings eliminated

• Can run sandboxed code at CPL 3
• So process can act like a kernel!

SR-IOV + IOMMU

• Goal: Allows direction execution of I/O device access
• Challenge #1: How to partition a single device into multiple instances
• Challenge #2: How to prevent DMA from overwriting memory

belonging to VMM or another guest

IOMMU

CPU 0 CPU 1 CPU 2 CPU 3

RAM

bus

PCIe Device

MMU

IOMMU

Major challenges in practice

1. Memory: Traditionally must be pinned (cannot be swapped)
• Pinning and unpinning is very expensive

2. Completions: Must be busy-polled (wastes CPU) or interrupt
driven (high overhead)
• Caladan offers a solution to this problem (next week)

3. Scalability: SR-IOV is HW intensive, IOTLB is limited in size
• Today’s IO devices degrade in performance beyond a certain scale

Conclusion

• VT-x and EPT enable direct execution of guest instructions
• Dune implements processes with VT-x and EPT rather than ordinary

ring protection

AIFM: High-Performance,
Application-Integrated Far Memory

Zain (Zhenyuan) Ruan* Malte Schwarzkopf † Marcos K. Aguilera ‡ Adam Belay*

*MIT CSAIL †Brown University ‡VMware Research

1

In-Memory Applications

2

Data Analytics

Database

Web Caching

Graph Processing

Memory Is Inelastic

ØLimited by the server physical boundary.

3

Memory Is Inelastic

• Limited by the server physical boundary.
ØApplications cannot overcommit memory.

4

Memory Is Inelastic

• Limited by the server physical boundary.
• Applications cannot overcommit memory.

ØExpensive solution: overprovision memory for peak usage.

5

Recent Far-Memory Systems

ØLeverage the idle memory of remote servers.

6

Local Server

Local Mem Net

Remote Server

Far MemNet

Recent Far-Memory Systems

• Leverage the idle memory of remote servers.
ØEnabler: narrowed Net/DRAM performance gap.

7

Local Server

Local Mem Net

Remote Server

Far MemNet

Far MemLocal Mem

Recent Far-Memory Systems

• Leverage the idle memory of remote servers.
• Enabler: narrowed Net/DRAM performance gap.
ØBuilt on top of OS paging (swap).

8

Local Server

Net

Remote Server

Net

state-of-the-art, 50% local mem
state-of-the-art, 25% local mem

95%

0

0.2

0.4

0.6

0.8

1
N

or
m

al
ize

d
Pe

rf
or

m
an

ce
Real-world Data Analytics from Kaggle

9

ideal

Does OS-Paging Systems Perform Well?

58% 70%

Why OS-Paging Systems Suffer?

ØGoal: transparent, no app code modification.

10

Why OS-Paging Systems Suffer?

• Goal: transparent, no app code modification.
• Require to use OS to manage virtual memory pages.

‒ Semantic gap.
‒ High kernel overheads.

11

Semantic Gap (in Paging Systems)

ØPage granularity. Example: R/W amplification.

12

Page

Semantic Gap (in Paging Systems)

13

• Page granularity. Example: R/W amplification.

ØOS lacks app knowledge. Example: hard to prefetch.

Page

Semantic Gap (in Paging Systems)

14

• Page granularity. Example: R/W amplification.

ØOS lacks app knowledge. Example: hard to prefetch.

Page

OS A sequence of random memory accesses.

App

High Kernel Overheads (in Paging Systems)

15

High Kernel Overheads (in Paging Systems)

16

ØUse expensive page faults.

APP

Remote Object

Page Fault
Handler (8 μs)

①

Kernel

User

② 1 μs

High Kernel Overheads (in Paging Systems)

17

• Use expensive page faults.
ØUse polling for in-kernel net I/O à burn CPU cycles.

APP

Remote Object

Page Fault
Handler (8 μs)

①

Net
(6 μs)

Kernel

User

③ Swap in page

④ Busy poll

② 1 μs

Design Space

Transparency

Perf.
Existing OS
paging systems

18

Design Space

Transparency

Perf.

Manually manage
objects

Existing OS
paging systems

19

Design Space

Transparency

Perf.
Existing OS
paging systems

?

20

Manually manage
objects

Design Space

Transparency

Perf.
Existing OS
paging systems

AIFM (this work)

21

Manually manage
objects

How Does AIFM Perform?

state-of-the-art, 50% local mem
state-of-the-art, 25% local mem

AIFM (us), 25% local mem

0

0.2

0.4

0.6

0.8

1
N

or
m

al
ize

d
Pe

rf
or

m
an

ce
Real-world Data Analytics from Kaggle

22

ideal

58% 70%

5%

AIFM’s Approach

ØAIFM: Application-Integrated Far Memory.

23

AIFM’s Approach

ØAIFM: Application-Integrated Far Memory.

Existing OS Paging Systems AIFM

• Semantic gap
• Page granularity
• No data structure knowledge

• High kernel overheads
• Page faults on accessing remote objs
• Busy polling for net I/O

24

AIFM’s Approach

ØAIFM: Application-Integrated Far Memory.

Existing OS Paging Systems AIFM

• Use data structure lib API to bridge gap

25

• Semantic gap
• Page granularity
• No data structure knowledge

• High kernel overheads
• Page faults on accessing remote objs
• Busy polling for net I/O

AIFM’s Approach

ØAIFM: Application-Integrated Far Memory.

Existing OS Paging Systems AIFM

• Semantic gap
• Page granularity
• No data structure knowledge

• High kernel overheads
• Page faults on accessing remote objs
• Busy polling for net I/O

• Use data structure lib API to bridge gap
• Object granularity

26

AIFM’s Approach

ØAIFM: Application-Integrated Far Memory.

Existing OS Paging Systems AIFM

• Semantic gap
• Page granularity
• No data structure knowledge

• High kernel overheads
• Page faults on accessing remote objs
• Busy polling for net I/O

• Use data structure lib API to bridge gap
• Object granularity
• Full data structure knowledge

27

AIFM’s Approach

ØAIFM: Application-Integrated Far Memory.

Existing OS Paging Systems AIFM

• Semantic gap
• Page granularity
• No data structure knowledge

• High kernel overheads
• Page faults on accessing remote objs
• Busy polling for net I/O

• Use data structure lib API to bridge gap
• Object granularity
• Full data structure knowledge

• Userspace runtime that swaps in/out objs

28

AIFM’s Approach

ØAIFM: Application-Integrated Far Memory.

Existing OS Paging Systems AIFM

• Semantic gap
• Page granularity
• No data structure knowledge

• High kernel overheads
• Page faults on accessing remote objs
• Busy polling for net I/O

• Use data structure lib API to bridge gap
• Object granularity
• Full data structure knowledge

• Userspace runtime that swaps in/out objs
• Function calls on accessing remote objs

29

AIFM’s Approach

ØAIFM: Application-Integrated Far Memory.

Existing OS Paging Systems AIFM

• Semantic gap
• Page granularity
• No data structure knowledge

• High kernel overheads
• Page faults on accessing remote objs
• Busy polling for net I/O

• Use data structure lib API to bridge gap
• Object granularity
• Full data structure knowledge

• Userspace runtime that swaps in/out objs
• Function calls on accessing remote objs
• Context switch for net I/O

30

AIFM in Action

31

Local Memory

Far Memory

App User-
Level Thread 0

1. Remoteable Data Structure Library

32

Remoteable
Data Structure

Local Memory

Far Memory

library APIApp User-
Level Thread 0

ØSolved challenge: semantic gap.

1. Remoteable Data Structure Library

33

Remoteable
Data Structure

App Semantics

Local Memory

Far Memory

library APIApp User-
Level Thread 0

ØSolved challenge: semantic gap.

1. Remoteable Data Structure Library

34

Remoteable
Data Structure

App Semantics

Prefetcher

Local Memory

Far Memory

library APIApp User-
Level Thread 0

ØSolved challenge: semantic gap.

1. Remoteable Data Structure Library

35

Obj 0Ptr 0

Ptr 1

Remoteable
Data Structure

App Semantics

Prefetcher

Local Memory

Far Memory

library APIApp User-
Level Thread 0

Obj 1

ØSolved challenge: semantic gap.

2. Userspace Runtime

36

Obj 0Ptr 0

Ptr 1

Remoteable
Data Structure

App Semantics

Prefetcher

Local Memory

Far Memory

library APIApp User-
Level Thread 0

Obj 1

ØSolved challenge: kernel overheads.

2. Userspace Runtime

37

Obj 0Ptr 0

Ptr 1

Remoteable
Data Structure

App Semantics

Prefetcher

Local Memory

Far Memory

library APIApp User-
Level Thread 0

App User-
Level Thread 1

Yield

Obj 1

ØSolved challenge: kernel overheads.

2. Userspace Runtime

38

Obj 0Ptr 0

Ptr 1

Remoteable
Data Structure

App Semantics

Prefetcher

Local Memory

Far Memory

library APIApp User-
Level Thread 0

App User-
Level Thread 1

YieldYield Obj 1

ØSolved challenge: kernel overheads.

3. Pauseless Evacuator

39

Obj 0Ptr 0

Ptr 1

Remoteable
Data Structure

App Semantics

Prefetcher

Local Memory (close to full)

Far Memory

library APIApp User-
Level Thread 0

App User-
Level Thread 1

YieldYield Obj 1

Obj N

…
Ptr N

ØSolved challenge: impact of memory reclamation.

3. Pauseless Evacuator

40

Obj 0Ptr 0

Ptr 1

Ptr N

Pauseless
Evacuator

Remoteable
Data Structure

App Semantics

Prefetcher

Local Memory (close to full)

Far Memory

library APIApp User-
Level Thread 0

App User-
Level Thread 1

YieldYield Obj 1

Obj N

…

ØSolved challenge: impact of memory reclamation.

3. Pauseless Evacuator

41

Obj 0Ptr 0

Ptr 1

Ptr N

Pauseless
Evacuator

Remoteable
Data Structure

App Semantics

Prefetcher

Local Memory

Far Memory

library APIApp User-
Level Thread 0

App User-
Level Thread 1

YieldYield Obj 1

Obj N

…

ØSolved challenge: impact of memory reclamation.

3. Pauseless Evacuator

42

Obj 0Ptr 0

Ptr 1

Ptr N

Pauseless
Evacuator

Remoteable
Data Structure

App Semantics

Prefetcher

Local Memory

Far Memory

library APIApp User-
Level Thread 0

App User-
Level Thread 1

YieldYield Obj 1

Obj N

evacuate

evacuate

…

ØSolved challenge: impact of memory reclamation.

3. Pauseless Evacuator

43

Obj 0Ptr 0

Ptr 1

Ptr N

Pauseless
Evacuator

Remoteable
Data Structure

App Semantics

Prefetcher

Local Memory

Far Memory

Obj 1 Obj N…

library APIApp User-
Level Thread 0

App User-
Level Thread 1

YieldYield
…

ØSolved challenge: impact of memory reclamation.

4. Remote Agent

44

Obj 0Ptr 0

Ptr 1

Ptr N

Pauseless
Evacuator

Remoteable
Data Structure

App Semantics

Prefetcher

Local Memory

Far Memory

Obj 1 Obj N…Remote
Agent

library APIApp User-
Level Thread 0

App User-
Level Thread 1

YieldYield

Light Operations

…

ØSolved challenge: network BW < DRAM BW.

4. Remote Agent

45

Obj 0Ptr 0

Ptr 1

Ptr N

Pauseless
Evacuator

Remoteable
Data Structure

App Semantics

Prefetcher

Local Memory

Far Memory

Obj 1 Obj N…Remote
Agent

library APIApp User-
Level Thread 0

App User-
Level Thread 1

YieldYield

e.g., Copy Obj 1

…

ØSolved challenge: network BW < DRAM BW.

4. Remote Agent

Obj 0Ptr 0

Ptr 1

Ptr N

… Pauseless
Evacuator

Remoteable
Data Structure

App Semantics

Prefetcher

46

Local Memory

Far Memory

Obj 1 Obj N…Remote
Agent

Copy

library APIApp User-
Level Thread 0

App User-
Level Thread 1

YieldYield

e.g., Copy Obj 1

ØSolved challenge: network BW < DRAM BW.

Sample Code

std::unordered_map<key_t, int> hashtable;
std::array<LargeData> arr;

LargeData foo(std::list<key_t> &keys_list) {
int sum = 0;
for (auto key : keys_list) {

sum += hashtable.at(key);
}

LargeData ret = arr.at(sum);
return ret;

}
47

Sample Code

RemHashTable<key_t, int> hashtable;
RemArray<LargeData> arr;

LargeData foo(RemList<key_t> &keys_list) {
int sum = 0;
for (auto key : keys_list) {

sum += hashtable.at(key);
}

LargeData ret = arr.at(sum);
return ret;

}
48

Sample Code

RemHashTable<key_t, int> hashtable;
RemArray<LargeData> arr;

LargeData foo(RemList<key_t> &keys_list) {
int sum = 0;
for (auto key : keys_list) {

DerefScope scope;
sum += hashtable.at(key, scope);

}
DerefScope scope;
LargeData ret = arr.at(sum, scope);
return ret;

}
49

Ensure the objects being accessed
will not be moved by the evacuator.

Sample Code

50

RemHashTable<key_t, int> hashtable;
RemArray<LargeData> arr;

LargeData foo(RemList<key_t> &keys_list) {
int sum = 0;
for (auto key : keys_list) {

DerefScope scope;
sum += hashtable.at(key, scope);

}
DerefScope scope;
LargeData ret = arr.at</*don’t cache*/ true>(sum, scope);
return ret;

}

Sample Code

RemHashTable<key_t, int> hashtable;
RemArray<LargeData> arr;

LargeData foo(RemList<key_t> &keys_list) {
int sum = 0;
for (auto key : keys_list) {

DerefScope scope;
sum += hashtable.at(key, scope);

}
DerefScope scope;
LargeData ret = arr.at</*don’t cache*/ true>(sum, scope);
return ret;

}
51

Prefetch list data.

Sample Code

RemHashTable<key_t, int> hashtable;
RemArray<LargeData> arr;

LargeData foo(RemList<key_t> &keys_list) {
int sum = 0;
for (auto key : keys_list) {

DerefScope scope;
sum += hashtable.at(key, scope);

}
DerefScope scope;
LargeData ret = arr.at</*don’t cache*/ true>(sum, scope);
return ret;

}
52

Prefetch list data.

Cache hot KV pairs.

Sample Code

RemHashTable<key_t, int> hashtable;
RemArray<LargeData> arr;

LargeData foo(RemList<key_t> &keys_list) {
int sum = 0;
for (auto key : keys_list) {

DerefScope scope;
sum += hashtable.at(key, scope);

}
DerefScope scope;
LargeData ret = arr.at</*don’t cache*/ true>(sum, scope);
return ret;

}

Prefetch list data.

Cache hot KV pairs.

Avoid polluting local mem.

53

Implementation

ØImplemented 6 data structures.
• Array, List, Hashtable, Vector, Stack, and Queue.

54

Implementation

• Implemented 6 data structures.
• Array, List, Hashtable, Vector, Stack, and Queue.

ØAIFM runtime is built on top of Shenango [NSDI’ 19]

55

Implementation

• Implemented 6 data structures.
• Array, List, Hashtable, Vector, Stack, and Queue.

• AIFM runtime is built on top of Shenango [NSDI’ 19]
ØTCP-based far memory backend.

56

Implementation

• Implemented 6 data structures.
• Array, List, Hashtable, Vector, Stack, and Queue.

• AIFM runtime is built on top of Shenango [NSDI’ 19]
• TCP-based far memory backend.
ØLoC: 6.5K (core runtime) + 5.5K (data structures) + 0.8K (Shenango)

57

Evaluation

ØSetup: 1 compute server + 1 far memory server, 25 GbE.

58

Evaluation

• Setup: 1 compute server + 1 far memory server, 25 GbE.
• How does AIFM

Ø… perform on applications with different compute intensities?

59

Evaluation

• Setup: 1 compute server + 1 far memory server, 25 GbE.
• How does AIFM
• … perform on applications with different compute intensities?
Ø… compare to the local-only (ideal) system?

60

Evaluation

• Setup: 1 compute server + 1 far memory server, 25 GbE.
• How does AIFM
• … perform on applications with different compute intensities?
• … compare to the local-only (ideal) system?
Ø… compare to the state-of-the-art paging system, Fastswap [EuroSys’ 20]?

61

Performance on Different Compute Intensities

62

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12N
or

m
al

ize
d

Pe
rf

or
m

an
ce

Microseconds of compute per far memory access

ideal

Performance on Different Compute Intensities

63

Converged to 1 at ~50 μs

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12N
or

m
al

ize
d

Pe
rf

or
m

an
ce

Microseconds of compute per far memory access

ideal

Performance on Different Compute Intensities

64

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12N
or

m
al

ize
d

Pe
rf

or
m

an
ce

Microseconds of compute per far memory access

Converged to 1 at ~50 μs
ideal

AIFM hides far memory latency with moderate compute.

Performance on Different Compute Intensities

65

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12N
or

m
al

ize
d

Pe
rf

or
m

an
ce

Microseconds of compute per far memory access

ideal

Performance on Different Compute Intensities

66

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12N
or

m
al

ize
d

Pe
rf

or
m

an
ce

Microseconds of compute per far memory access

ideal

Performance on Different Compute Intensities

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12N
or

m
al

ize
d

Pe
rf

or
m

an
ce

Microseconds of compute per far memory access

67

ideal

Synthetic Web Frontend

User Req
Remoteable
Hashtable

keys idx Remoteable
Array

68

Compress
& Encrypt

Web profile (8K)

Synthetic Web Frontend

User Req
Remoteable
Hashtable

keys idx Remoteable
Array

Ø Object-level caching.

69

Compress
& Encrypt

Web profile (8K)

Synthetic Web Frontend

User Req
Remoteable
Hashtable

keys idx Remoteable
Array

Compress
& Encrypt

Ø Avoid polluting local mem

70

Web profile (8K)

• Object-level caching.

Synthetic Web Frontend

User Req
Remoteable
Hashtable

keys idx Remoteable
Array

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100N
or

m
al

ize
d

Pe
rf

or
m

an
ce

Local Memory Ratio (%)

• Object-level caching. • Avoid polluting local mem

71

Compress
& Encrypt

Web profile (8K)

ideal

Synthetic Web Frontend

User Req
Remoteable
Hashtable

keys idx Remoteable
Array

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100N
or

m
al

ize
d

Pe
rf

or
m

an
ce

Local Memory Ratio (%)

• Object-level caching.

72

Compress
& Encrypt

Web profile (8K)

ideal

• Avoid polluting local mem

Synthetic Web Frontend

User Req
Remoteable
Hashtable

keys idx Remoteable
Array

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100N
or

m
al

ize
d

Pe
rf

or
m

an
ce

Local Memory Ratio (%)

• Object-level caching.

73

Compress
& Encrypt

Web profile (8K)

ideal

• Avoid polluting local mem

Synthetic Web Frontend

User Req
Remoteable
Hashtable

keys idx Remoteable
Array

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100N
or

m
al

ize
d

Pe
rf

or
m

an
ce

Local Memory Ratio (%)

• Object-level caching.

13 X

74

Compress
& Encrypt

Web profile (8K)

ideal

• Avoid polluting local mem

Performance on Different Compute Intensities

75

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12N
or

m
al

ize
d

Pe
rf

or
m

an
ce

Microseconds of compute per far memory access

ideal

Performance on Different Compute Intensities

76

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12N
or

m
al

ize
d

Pe
rf

or
m

an
ce

Microseconds of compute per far memory access

ideal

NYC Taxi Analysis (C++ DataFrame)

ØDataFrame: data analytical framework, similar to Python Pandas.

77

NYC Taxi Analysis (C++ DataFrame)

• DataFrame: data analytical framework, similar to Python Pandas.
ØReal Kaggle workload: use DataFrame to explore trip dimensions.
• Working set size = 31 GB.
• Modify 1.4K LoC (out of 24.3K LoC), five person-days.

78

NYC Taxi Analysis (C++ DataFrame)

• DataFrame: data analytical framework, similar to Python Pandas.
• Real Kaggle workload: use DataFrame to explore trip dimensions.
• Working set size = 31 GB.
• Modify 1.4K LoC (out of 24.3K LoC), five person-days.

ØRelatively low compute intensity à Unable to hide far-mem latency.

79

NYC Taxi Analysis (C++ DataFrame)

• DataFrame: data analytical framework, similar to Python Pandas.
• Real Kaggle workload: use DataFrame to explore trip dimensions.
• Working set size = 31 GB.
• Modify 1.4K LoC (out of 24.3K LoC), five person-days.

• Relatively low compute intensity à Unable to hide far-mem latency.
ØKeep complex operations locally and offload very light operations.
• Significantly reduce expensive data transfer over network.

80

NYC Taxi Analysis (C++ DataFrame)

81

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

Local Memory Ratio (%)

ideal

NYC Taxi Analysis (C++ DataFrame)

82

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

Local Memory Ratio (%)

ideal

NYC Taxi Analysis (C++ DataFrame)

83

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

Local Memory Ratio (%)

(x=3%, y=0.77)

ideal

AIFM achieves near-ideal performance with small local memory.

NYC Taxi Analysis (C++ DataFrame)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

Local Memory Ratio (%)

(x=3%, y=0.77)

(x=23%, y=0.95)

84

ideal

AIFM achieves near-ideal performance with small local memory.

Conclusion

ØAIFM: Application-Integrated Far Memory.

85

Conclusion

• AIFM: Application-Integrated Far Memory.
ØKey idea: swap memory using a userspace runtime.

86

Conclusion

• AIFM: Application-Integrated Far Memory.
• Key idea: swap memory using a userspace runtime.

ØData Structure Library: captures application semantics.

87

Conclusion

• AIFM: Application-Integrated Far Memory.
• Key idea: swap memory using a userspace runtime.
• Data Structure Library: captures application semantics.
ØUserspace Runtime: efficiently manages objects and memory.

88

Conclusion

• AIFM: Application-Integrated Far Memory.
• Key idea: swap memory using a userspace runtime.
• Data Structure Library: captures application semantics.
• Userspace Runtime: efficiently manages objects and memory.

ØAchieves 13X end-to-end speedup over Fastswap.

89

Conclusion

• AIFM: Application-Integrated Far Memory.
• Key idea: swap memory using a userspace runtime.
• Data Structure Library: captures application semantics.
• Userspace Runtime: efficiently manages objects and memory.

• Achieves 13X end-to-end speedup over Fastswap.
ØCode released at https://github.com/AIFM-sys/AIFM

90

