
6.5810: FAASM
Adam Belay <abelay@mit.edu>

1



Logistics

• Sign up to meet + discuss your final project (happening tomorrow)



Recap

• Serverless isolation mechanisms
• So far: GVisor (library OS), Firecracker (virtualization), and UKL 

(Unikernels)
• Today: FAASM (software fault isolation)
• Some similarities to CloudFlare Workers (recently open sourced)
• https://github.com/cloudflare/workers.cloudflare.com

https://github.com/cloudflare/workers.cloudflare.com


FAASM’s plan

• Rely on Web Assembly for isolation
• Key advantage: Functions can share memory directly

• Everything else done the standard way:
• Cgroups: memory and CPU quotas
• Network namespaces + traffic shaping: Bandwidth limits
• Etc.



Quick aside: Software fault isolation

• Restricts a function to accesses of its own memory
• Works by inserting checks before memory and control transfer 

instructions
• Provides a logical isolation domain inside a process (despite sharing 

the same page table and memory)
• In the past: Binary translation has been used to achieve SFI
• This work targets a special instruction set architecture instead



Quick aside: Web Assembly (WASM)

• History: Highly optimized Javascript JITs already existed (e.g., V8)
• Can we leverage this existing infrastructure to run native code?
• Plan: Define a “web assembly” language for portability
• This means you must compile to web assembly
• But can support C, C++, Rust, etc. (any LLVM front end)

• JIT translates web assembly to native assembly
• Checks inserted to preserve memory safety



FAASM Design

Memory isolation

Function
Private

Shared

Memory

Memory isolation

Function
Private

Shared

Memory

…

Virtual net interface File system

Message Bus



Faaslet

• Isolation
• Access constrained to a contiguous memory region
• By default, all memory is private, but shared mappings are possible
• Control flow integrity ensure function can’t jump out of its code

• Faaslets can be snapshotted to reduce startup times
• Each Faaslet runs in a single thread
• Standard mechanism (e.g., cgroups) enforce resource limits



Host interface



Host interface enables faster communication

• Normally: All intermediate results placed in a key value store over the
network (e.g., S3)
• Here, functions can pass byte arrays directly to one another inside the 

same process using shared memory
• But some benefit lost if functions don’t fit on same machine



State programming model

• Build on distributed data objects (DDOs)
• Key -> value abstraction

• Two tiers; local tier provides shared memory access, global tier
transfers over the network
• Push() and Pull() operations explicitly transfer data from local to 

global tier



Faasm scheduling

• Distributed scheduling
• Goal: Place calls on 

instances with warm 
functions and shared 
data



Faasm snapshotting

• Web assembly represents memory as a simple array of bytes
• FAASM’s plan: Fully load a function, then copy the byte array and

store it for future execution in a shared object store
• Eliminates code generation cost and other initialization
• Copy-on-write mappings can be used to restore a clean copy 

efficiently



Evaluation: SGD (machine learning)



Evaluation: Python compute overhead



Startup times and initial memory use



Another perspective on compute overhead

Not So Fast: Analyzing the Performance of WebAssembly vs. Native Code. Jangda et. Al. ATC’19

Mean slowdown ~1.5x



Discuss: Does FAASM achieve Amazon’s goals?

1. Isolation
2. Density
3. Performance
4. Compatibility
5. Fast switching
6. Soft allocation



Conclusion

• Web assembly + FAASM enables very fast context switching, startup 
times, snapshotting, and data sharing
• But CPU throughput remains an issue
• Can it be optimized further?


