
6.5810: Firecracker
Adam Belay <abelay@mit.edu>

1



Agenda for today

• Firecracker: Amazon’s serverless runtime
• VM-based, but lighter weight than a traditional VM
• Recall: Gvisor uses a libOS instead

• Reminders:
• No class Wednesday
• Work on lab 3
• Propose a final project (alone or in a group of two)
• Send us an email with your project idea and how you will evaluate it
• After, we will meet and provide feedback on your proposal



Recap: Serverless

• Goal: Eliminate packaging and management (e.g., VMs or containers)
• Instead, function as a service (FaaS):
• Less time spent operating servers and capacity
• Automatic scaling
• Pay per-use of resources
• Integration with source events / streaming data



Challenge: Multitenancy

• Must isolate for security
• One function can not violate the memory isolation of another

• Must isolate for performance
• Must avoid the noisy neighbor problem

• Firecracker takes steps to overcome both challenges



Virtualization in Linux normally

QEMU VM
(Guest)

KVM Kernel Module

/dev/kvm

VM Enter/ExitIOCTL()



Firecracker replaces QEMU

FireCracker VM
(Guest)

KVM Kernel Module

/dev/kvm

VM Enter/ExitIOCTL()



What does QEMU do?

• Performs VMM functions in userspace
• Provides device model (i.e., emulates virtual hardware devices)
• Manages VM creation and deletion

• Firecracker does less intentionally!
• No BIOS, no CPU emulation, no legacy devices or PCI, no VM migration
• E.g., it could not boot Windows
• Why?



Amazon originally used VMs + Containers

• Originally Amazon used containers to isolate functions, and then VMs 
to isolate customers
• Problem: Containers sacrifice security (or compatibility)
• Problem: Hard to binpack functions onto fixed-sized VMs
• Not mentioned in paper, but significant memory overhead (density)



Firecracker’s goals

• Isolation: Run multiple functions on same hardware. Protect against 
privilege escalation, information disclosure, side channels, etc.
• Overhead and Density: Must handle thousands of functions on the 

same machine with minimal waste
• Performance: Functions must perform similarly to running natively. 

Performance must be isolated across neighbors
• Compatibility: Must support arbitrary Linux binaries and libraries 

without code changes or recompilation



More goals…

• Fast Switching: It must be possible to start new functions and clean 
up old ones quickly
• Soft Allocation: Must be able to overcommit resources; each function

consumes only the resources it needs, not the amount it is entitled to

• Why does Amazon care about these?



Options for AWS Lambda

• Paper considers containers; virtualization; or language-based isolation
• Library OS (e.g., gVisor) also possible alternative for containers



Recap: Containers

• A composition of Linux Kernel features (not a real subsystem)
• cgroups: provide resource limits for memory and CPUs
• namespaces: provide separate UIDs, PIDs, and network interfaces
• seccomp-bpf: limits system calls and their arguments
• chroot: provides file system isolation

Problem: Isolation is a challenge: e.g., typical Ubuntu install requires 
224 system calls and 52 unique ioctls



Language-based isolation

• Use a runtime system to run multiple functions in the same process
• E.g., JVM or V8 uses safe languages to provide isolation
• Each function is called an isolate
• See Cloudflare for a production example of this approach

Problem: Compatibility -> cannot support arbitrary binaries. Also, side-
channels are a potential concern



Virtualization

• Uses Intel VT-x (or equivalent) to provide each function its own virtual 
hardware, page tables, and kernel
• Better security and compatibility

Many challenges: Density; VMM + Guest Kernel consume memory. 
Startup time; takes in the range of seconds to start VM; still large attack 
surface in VMM
Amazon’s plan: Improve virtualization and overcome these challenges



Debate: What approach do you
think is the best? Why?



Firecracker replaces QEMU

• 50k lines of Rust code (a safe, native language)
• 96% fewer lines than QEMU (written in C)
• MicroVMs: stripped down Linux guests with minimal virtual HW
• One firecracker process handles one MicroVM



Q: What virtual devices does 
firecracker provide?



Firecracker’s device model

• Mainly network and block devices
• But also serial ports and PS/2 keyboard for debugging
• Virtio provides an interface for both network and block I/O
• Shared memory channel between guest and firecracker

• Firecracker only exposes blocks, never the Linux filesystem… why?



Rate limiters

• Challenge: One function could monopolize I/O resources
• Solution: rate limiting
• Firecracker can be configured to enforce a max bytes/s of networking

or IO/s of storage
• Firecracker uses token bucket algorithm; allowing short bursts to

exceed limits
• cgroups still needed to enforce memory and CPU use limits



Security

• Context: This paper was published when Spectre and Meltdown were 
recently discovered
• Therefore, side channels were a big concern
• Amazon’s solution:
• Disable hyperthreads completely… why?
• Enable Kernel mitigations: KPTI, indirect branch barriers, cache flushing, etc.
• Downside? Higher overhead



Jailer

• Threat: What if attacker injects code into the Firecracker VMM
• Solution Jailer: Defense in depth
• Places Firecracker in a sandbox before it boots the Guest
• Uses seccomp-filter to restrict system calls, chroot + namespaces, and drops

privileges



AWS Lambda service

• Built on top of 
functions / Firecracker
• Events sticky-routed

to as few workers as
possible
• Slots: Pre-loaded 

execution 
environments for 
functions
• MicroVM reused



Lambda workers

• Each slot consists of a 
MicroVM and its 
Firecracker VMM instance
• Lambda shim handles 

control messages and 
launches functions
• Micro manager maintains a 

pool of pre-booted 
MicroVMs



Boot time



Modifying the guest improves boot time!

• Supporting legacy devices adds 900ms to startup
• Normally kernel image is compressed, firecracker loads

uncompressed
• All kernel modules disabled; no extra hardware support included
• Disabling logging to serial console saves 70ms
• No BIOS saves boot time too



VMM process size



IO Performance

Hardware supports 340,000 IOPS; 1 GB/s at 4k; serial access to disk harms FC performance



Network performance

Streaming throughput Gb/s for different numbers of flows and directions



Does Firecracker achieve its goals?

• Isolation: Yes (for security)! Virtualization reduces attack surface, 
jailer, and writing VMM in rust. Performance isolation is less clear.
• Density: Yes! Reduced memory overhead down to 3%.
• Performance: No! High I/O overhead observed.
• Compatibility: Yes! Good enough to run all customer workloads.
• Fast switching: Yes! 150ms start time for slots.
• Soft allocation: Yes! Memory and CPU oversubscribed by 10x.



Conclusion

• Firecracker is opensource; check it out!
• VM-based approach is traditionally heavy weight
• Resolvable through new VMM (Firecracker) and stripped-down guests

• Performance is an open problem for cloud isolation mechanisms
• But Firecracker does deliver density, isolation, and fast switching
• Research question: Can we improve these even more?
• Do we have to sacrifice compatibility to do so?


