
6.5810: Host networking
Adam Belay <abelay@mit.edu>

1



Some motivation

• 2009 (Nehalem): 4 cores * 3GHZ / (10GbE / MTU)
= 13,440 cycles per packet

• 2022 (Ice Lake): 32 cores * 2.3GHZ / (200GbE / MTU)
= 4,121 cycles per packet

Challenge in paper is 3x harder today!



Cycle costs for perspective

Budget: ~4000 cycles

• Interrupts: 200–2000 cycles (depending on TLB etc.)
• Malloc: 30-200 cycles
• Kernel transition: 200+ cycles

Other operations: Protocol handling (e.g., TCP), pacing + QoS, memory 
copying, locking + synchronization, segmentation, descriptor ring 
management, ref counting, thread scheduling, socket API, etc.



Q: How can we saturate NICs with today’s CPUs?

• Better question: How can we take advantage of NIC performance 
without wasting a ton of cores!
• Budget should be much smaller than 4000 cycles!

• Caladan today: ~2000 cycles per packet w/ TCP
• Up to 10x faster than Linux depending on packet size + MTU
• Includes thread scheduling and socket API cost



Sockets

• Abstraction for communicating between machines
• Requires copying of data from packet buffers to application buffers

• Datagram sockets: Unreliable message delivery
• e.g. UDP
• Messages may be reordered or lost
• Reads return the full message (if req len is large enough)

• Stream sockets: Bi-directional pipes
• e.g. TCP
• Bytes written on one end, are read on the other
• Reads may not return the full amount requested



Socket implementation

• Both TCP and UDP name connection endpoints
• 32-bit IP address specifies machine
• 16-bit Port number demultiplexes within host

• Thus, a connection is named by 5 components
• Protocol (UDP), local IP, local Port, remote IP, remote Port (called a 5-tuple)

• OS keeps connection state in PCB structures
• Keep all PCBs in a hash table
• When packet arrives, use 5-tuple to find PCB and use PCB to determine what 

to do with packet



Recap: How to transfer pkts to/from NIC?

CPU 0 CPU 1 CPU 2 CPU 3

RAM

bus

NIC



Idea: Have CPU copy to RAM

CPU 0 CPU 1 CPU 2 CPU 3

RAM

bus

NIC



Better: Have NIC copy to RAM
Called direct memory access (DMA)

CPU 0 CPU 1 CPU 2 CPU 3

RAM

bus

NIC DMA
Engine



OS programs DMA engine

• Circular array of descriptors (fetched from memory by NIC)
• Each descriptor describes location to put packet in memory

0

2^48

NIC descriptors

…

Memory locations



DMA details

• OS provides NIC with locations to copy packet data
• NIC provides OS with notifications of finishing
• Mechanism #1: Writes done flag to descriptor
• Mechanism #2: Sends interrupts

• OS recycles descriptors
• Gives previous buffer to networking stack (or frees it)
• Then allocates and programs new buffer into descriptor

• Descriptors often contain flags and metadata about how to receive or 
transmit a packet
• Separate descriptor rings for receive and transmit



Don’t starve the DMA engine

• Need to keep descriptor rings full!
• What if receive ring goes empty?
• NIC drops packets!

• What if transmit ring goes empty?
• NIC wastes bandwidth! (doesn’t send)

• OS must constantly monitor descriptors!
• Can poll, by checking them periodically
• Or can program NIC to send interrupts



The Paper: TCP onloading

• Context: Written by Intel; vendor of both NICs and CPUs
• Discusses several existing optimizations and proposes new optimizations

• Concern over whether CPUs could keep up with 10GbE networks
• Same problem is happening today with 200GbE+ networks



Existing optimizations (in 2004)

• Interrupt moderation: Accumulate packets before sending interrupts
• Results in less interrupt overhead but higher latency

• Checksum offload: Calculate internet protocol checksums in HW
• Some mistakes made in early hardware, but eventually a simple one’s complement 

of the packet was sufficient to support nearly all checksums
• Only beneficial, a great and simple offload

• Large segment offload: Segments TX transfers larger than MTU in HW
• Requires just enough TCP state (in the descriptor) to set up the headers
• Causes bursts in network fabric, resulting in higher latency



Challenges identified in the paper

1. OS overhead: software layers, interrupts, system calls, buffer mgmt.
2. Poor cache locality: DMA places packet buffer in RAM, not cache
3. Data copying: An extra copy from packet buffer to application 

buffer is required



TCP Offload (TOE)?

• Idea: Put the entire TCP network stack in the NIC
• Sounds great, but many challenges:
• Most of the overhead isn’t TCP: interrupts, buffers, copying, system calls, etc.
• TCP has a ton of branches and memory state, normal CPUs are great at this
• Generally, the NIC has worse caching, less local memory, less bandwidth to 

DRAM, less investment in silicon process
• Flexibility: Hard or impossible to evolve TCP protocol (e.g., BBR)
• Kernel developers wanted more control of networking

• Little adoption in practice



Future enhancements discussed in paper

• Async I/O: More efficient but hard to use programming model
• Header splitting: Put headers in a separate place from data
• Receive side scaling: Spread packets across cores with hashing

RSS was a huge win; but the others have mixed value today



What does TCP onloading mean?

• Plan: Make CPUs better at processing packets
• Onload is the opposite of offload, or placing the work on the NIC
• Intel developed a collection of CPU changes to reduce overhead, 

some of which made it into today’s hardware



Direct cache access (DCA)

• Problem: Packet buffers are DMAed into DRAM, simply accessing the 
memory will eventually be too costly
• Solution: Place descriptors and payloads directly in the CPU cache
• Some interesting problems, such as cache interference with 

applications
• Today Intel calls this DDIO



Copy engine

• Problem: CPU cores spend a nontrivial time moving data
• Solution: Add dedicated hardware to perform memcpy (not cores)
• Completion processing is still hard and potentially costly
• Interrupts or polling, locality etc.

• Rapidly evolving space even today



Lightweight threading (hardware)

• Problem: CPU cores stall waiting for memory loads
• Solution: Hardware threading (similar to hyperthreading)
• Challenge: Too much threading can harm latency
• Also, DCA reduces these stalls
• So far, this hardware has not materialized



Other ideas

• Increase the maximum transmission unit (MTU)
• 1400 bytes -> 9000 bytes possible on ethernet (jumbo frames)
• Reduces packet rate, enormous benefits for bulk transfers

• Receive-side coalescing (RSC)
• NIC combines in-order TCP frames
• Effect almost the same as larger MTU in practice
• But fails when there is pacing or many active connections

• Change the socket API to support zero-copy
• Worth it for bulk transfers; no benefit for small transfers



Recent developments

• RDMA: NIC can read remote memory without CPU involvement (on 
the remote side)
• Like TOE, protocol-level handling happens in the NIC

• CXL: PCIe bus will soon be cache coherent with the CPU
• CPU can directly load and store data exposed over bus
• CXL 2.0 (not out yet) will expose memory over a switch to many machines
• Latency will be higher than DRAM; potential performance challenges



Recap: Primary overheads

1. Interrupts
2. System calls
3. Copying
4. TCP/IP protocol
5. Buffer management
6. Driver
7. Core Scheduling / Threading

Hard to eliminate any of these steps in a general solution
DPDK is specialized; can skip interrupts, system calls, copying, and 
scheduling; but can only support a limited set of applications



Discussion: What should we do 
next to reduce host networking 
overhead?


