6.5810: Host networking

Adam Belay <abelay@mit.edu>

CsAIL




Some motivation

* 2009 (Nehalem): 4 cores * 3GHZ / (10GbE / MTU)
= 13,440 cycles per packet

e 2022 (Ice Lake): 32 cores * 2.3GHZ / (200GbE / MTU)
= 4,121 cycles per packet

Challenge in paper is 3x harder today!



Cycle costs for perspective

Budget: ~4000 cycles

* Interrupts: 200—2000 cycles (depending on TLB etc.)
* Malloc: 30-200 cycles
* Kernel transition: 200+ cycles

Other operations: Protocol handling (e.g., TCP), pacing + QoS, memory
copying, locking + synchronization, segmentation, descriptor ring
management, ref counting, thread scheduling, socket API, etc.



Q: How can we saturate NICs with today’s CPUs?

* Better question: How can we take advantage of NIC performance
without wasting a ton of cores!

* Budget should be much smaller than 4000 cycles!

 Caladan today: ~2000 cycles per packet w/ TCP
e Up to 10x faster than Linux depending on packet size + MTU
* Includes thread scheduling and socket API cost



Sockets

* Abstraction for communicating between machines
* Requires copying of data from packet buffers to application buffers

* Datagram sockets: Unreliable message delivery
* e.g. UDP
* Messages may be reordered or lost
» Reads return the full message (if req len is large enough)

* Stream sockets: Bi-directional pipes
* e.g. TCP
* Bytes written on one end, are read on the other
* Reads may not return the full amount requested



Socket implementation

* Both TCP and UDP name connection endpoints
e 32-bit IP address specifies machine
e 16-bit Port number demultiplexes within host

* Thus, a connection is named by 5 components
* Protocol (UDP), local IP, local Port, remote IP, remote Port (called a 5-tuple)

* OS keeps connection state in PCB structures
* Keep all PCBs in a hash table

* When packet arrives, use 5-tuple to find PCB and use PCB to determine what
to do with packet



Recap: How to transfer pkts to/from NIC?

CPUO CPU 1 CPU 2 CPU 3
s

bus <




|[dea: Have CPU copy to RAM

CPUO

bus <

/‘

CPU 2 CPU 3




Better: Have NIC copy to RAM
Called direct memory access (DMA)

CPUO CPU 1 CPU 2 CPU 3

bus <




OS programs DMA engine

e Circular array of descriptors (fetched from memory by NIC)
* Each descriptor describes location to put packet in memory

2748

Memory locations

NIC descriptors



DMA details

* OS provides NIC with locations to copy packet data

* NIC provides OS with notifications of finishing
 Mechanism #1: Writes done flag to descriptor
* Mechanism #2: Sends interrupts

* OS recycles descriptors
» Gives previous buffer to networking stack (or frees it)
* Then allocates and programs new buffer into descriptor

* Descriptors often contain flags and metadata about how to receive or
transmit a packet

* Separate descriptor rings for receive and transmit



Don’t starve the DMA engine

* Need to keep descriptor rings full!

* What if receive ring goes empty?
* NIC drops packets!

 What if transmit ring goes empty?
* NIC wastes bandwidth! (doesn’t send)

e OS must constantly monitor descriptors!
* Can poll, by checking them periodically
* Or can program NIC to send interrupts



The Paper: TCP onloading

* Context: Written by Intel; vendor of both NICs and CPUs
* Discusses several existing optimizations and proposes new optimizations

* Concern over whether CPUs could keep up with 10GbE networks
 Same problem is happening today with 200GbE+ networks



Existing optimizations (in 2004)

* Interrupt moderation: Accumulate packets before sending interrupts
e Results in less interrupt overhead but higher latency

* Checksum offload: Calculate internet protocol checksums in HW

* Some mistakes made in early hardware, but eventually a simple one’s complement
of the packet was sufficient to support nearly all checksums

* Only beneficial, a great and simple offload

* Large segment offload: Segments TX transfers larger than MTU in HW
e Requires just enough TCP state (in the descriptor) to set up the headers
e Causes bursts in network fabric, resulting in higher latency



Challenges identified in the paper

1. OS overhead: software layers, interrupts, system calls, buffer mgmt.
2. Poor cache locality: DMA places packet buffer in RAM, not cache

3. Data copying: An extra copy from packet buffer to application
buffer is required



TCP Offload (TOE)?

e |dea: Put the entire TCP network stack in the NIC

* Sounds great, but many challenges:
* Most of the overhead isn’t TCP: interrupts, buffers, copying, system calls, etc.
TCP has a ton of branches and memory state, normal CPUs are great at this

Generally, the NIC has worse caching, less local memory, less bandwidth to
DRAM, less investment in silicon process

Flexibility: Hard or impossible to evolve TCP protocol (e.g., BBR)
Kernel developers wanted more control of networking

* Little adoption in practice



Future enhancements discussed in paper

* Async |/O: More efficient but hard to use programming model
* Header splitting: Put headers in a separate place from data
* Receive side scaling: Spread packets across cores with hashing

RSS was a huge win; but the others have mixed value today



What does TCP onloading mean?

* Plan: Make CPUs better at processing packets
* Onload is the opposite of offload, or placing the work on the NIC

* Intel developed a collection of CPU changes to reduce overhead,
some of which made it into today’s hardware



Direct cache access (DCA)

* Problem: Packet buffers are DMAed into DRAM, simply accessing the
memory will eventually be too costly

* Solution: Place descriptors and payloads directly in the CPU cache

* Some interesting problems, such as cache interference with
applications

* Today Intel calls this DDIO



Copy engine

* Problem: CPU cores spend a nontrivial time moving data
* Solution: Add dedicated hardware to perform memcpy (not cores)

* Completion processing is still hard and potentially costly
* Interrupts or polling, locality etc.

* Rapidly evolving space even today



Lightweight threading (hardware)

* Problem: CPU cores stall waiting for memory loads

* Solution: Hardware threading (similar to hyperthreading)
* Challenge: Too much threading can harm latency

* Also, DCA reduces these stalls

* So far, this hardware has not materialized



Other ideas

* Increase the maximum transmission unit (MTU)
* 1400 bytes -> 9000 bytes possible on ethernet (jumbo frames)
* Reduces packet rate, enormous benefits for bulk transfers

* Receive-side coalescing (RSC)
* NIC combines in-order TCP frames
» Effect almost the same as larger MTU in practice
* But fails when there is pacing or many active connections

* Change the socket API to support zero-copy
 Worth it for bulk transfers; no benefit for small transfers



Recent developments

* RDMA: NIC can read remote memory without CPU involvement (on
the remote side)

* Like TOE, protocol-level handling happens in the NIC

e CXL: PCle bus will soon be cache coherent with the CPU
* CPU can directly load and store data exposed over bus
e CXL 2.0 (not out yet) will expose memory over a switch to many machines
* Latency will be higher than DRAM; potential performance challenges



Recap: Primary overheads

Interrupts

System calls

Copying

TCP/IP protocol

Buffer management

Driver

Core Scheduling / Threading

N s Wb e

Hard to eliminate any of these steps in a general solution

DPDK is specialized; can skip interrupts, system calls, copying, and
scheduling; but can only support a limited set of applications



Discussion: What should we do
next to reduce host networking
overhead?



