6.5810: Serverless + |solation

Adam Belay <abelay@mit.edu>

CsAIL

Serverless computing

* A new cloud programming model
* Key idea: Building applications without thinking about servers

* Function as a service (FaaS): Run a simple code function, let the cloud
provider decide where and how to run it

* Typically, the function must be short (a few seconds or less) and
consume relatively few resources (e.g., one core, 2GB RAM)

* Makes it easier for cloud provider to pack instances
* Scale automatically; pay per use
* Consequence: Multiple tenants on each machine

Agenda today

* Discuss the isolation and security aspect of serverless

* Explore new and recent ways of securing cloud applications
» gVisor and Firecracker

* Review the solutionstolab 1
* Lab 3 will be assighed later today

Isolation schemes studied in the paper

* Native Linux: System call boundary determines isolation

* Linux containers: Same, but each container has a separate namespace
maintained by the kernel (e.g., a different filesystem)

e g\/isor Containers: OS functionality implemented as a library OS inside
a Linux process. Library then makes a narrow set of system calls.

* Firecracker: Stripped down VMs, heavily paravirtualized
* Full VM: Guest kernel operates like a normal, complete kernel

Spectrum of OS functionality

Native Linux gVisor Firecracker Full VM
Linux Container Container MicroVM .
< >

Host , , , Guest
Location of functionality

What is an attack surface?

* The sum of the different vectors where an attacker can try to break
the isolation of a system

* One way of thinking: System calls are the attack surface

* This paper: Code coverage is the attack surface?

LiInux containers

* A normal Linux process mostly; large attack surface (all system calls)
* cgroups provide resource limits, performance isolation, etc.
* chroot provides separate filesystem namespace

* Tools like docker make it easy to bundle and manage containers

g\/isor architecture

Sandbox

1 9P
Sentry (userspace kernel) —> Gofer

Container

[netstack] :

User :

[R /A -
D K Lt A -
Kernel | . 1
[KVM/ptrace Syscalls(limited) File access :
: |
: [
: [
I Host Kernel :

[

[

Blending Containers and Virtual Machines: A Study of Firecracker and gVisor. Anjali et. Al. VEE’20

gVisor components

e Sentry: A userspace kernel, written in Go
* All system calls made by the application are redirected to the Sentry
* The sentry implements most system calls itself (supports 237 calls)
 However, it makes 53 system calls to the host to support its operation
* Seccomp filter restricts access to these calls

* App never directly makes host system calls (must go through sentry)
* Ptrace-mode: ptrace forwards syscalls to sentry
 KVM-mode: trap and handle system calls, forward to sentry (faster)

» Gofer: Provides sentry with access to file system resources
* The sentry cannot directly read or write any files

Seccomp filter

* Users can load custom code into the kernel without violating isolation

* Berkeley Packet Filter (BPF) provides a stripped-down, restricted
assembly language that can be easily verified

* Fixed-length instructions, 32-bit, 1 accumulator, 1 index register

* BPF code can be used to filter which system calls (and the arguments
passed to them) are allowed

Example seccomp filter

struct sock_filter filter[] = {
BPF _STMT(BPF _LD+BPF_W+BPF_ABS, syscall _nr),
BPF _JUMP(BPF _JMP+BPF JEQ+BPF K, NR_exit group, O, 1),
BPF _STMT(BPF_RET+BPF_K, SECCOMP_RET ALLOW),
BPF_STMT(BPF_RET+BPF _K, SECCOMP_RET _KILL),

}

AWS Firecracker

Block
[vCPU] [Storage] [Memory] [vNIC]

microVM E }
i Hardware
Emulation
KVM
- N |[€—> Firecracker
VMM

Filesystem and Network

Linux Kernel

Blending Containers and Virtual Machines: A Study of Firecracker and gVisor. Anjali et. Al. VEE’20

Firecracker components

e Uses a virtual machine, not a process (i.e., VT-x that we saw earlier)

* But still has somewhat of a Sentry, called the firecracker VMM
* Manages storage and net I/O through virtio, a software |/O queue

* MicroVMs run an extremely stripped-down Linux distro
* More details on firecracker in upcoming lecture

Allowed system calls

Total allowed syscalls
Platform to the host kernel
LXC all except 44
Firecracker 36
gVisor w/o host networking 53
gVisor w/ host networking 68

Table 1. Total number of system calls allowed out of 350

Blending Containers and Virtual Machines: A Study of Firecracker and gVisor. Anjali et. Al. VEE’20

Code coverage

Host | Firecracker | LXC gVisor
Lines 63,163 77,392 | 90,595 | 91,161
Coverage | 7.83% 9.59% | 11.23% | 11.31%

Table 2. Union of line coverage across all work!
806,318 total lines in the Linux kernel.

oads out of

Blending Containers and Virtual Machines: A Study of Firecracker and gVisor. Anjali et. Al. VEE’20

Code coverage venn diagram

Firecracker LXC

864
7403 20079

2725

gVisor
Blending Containers and Virtual Machines: A Study of Firecracker and gVisor. Anjali et. Al. VEE'20

Networking bandwidth

host —— LXC ——— gVisor+host
—v— Firecracker = —e— gVisor

B oane===

=

©

o
]

~
(92
1

|
|

1 1 I I I

Aggr. bandwidth (Gbps)
Ul
o

No. of instances

Figure 8. Aggregate Network Bandwidth

Blending Containers and Virtual Machines: A Study of Firecracker and gVisor. Anjali et. Al. VEE’20

Network latency

Host

Firecracker

LXC

gVisor

RTT (us)

146

371

149

319

Table 3. Round-trip time

Blending Containers and Virtual Machines: A Study of Firecracker and gVisor. Anjali et. Al. VEE'20

I\/Iemory Mmanagement

* Two very different strategies
e g\isor’s sentry allocates memory in 16(MB chunks using mmap()

* Firecracker’s guest manages its own guest-physical memory
* But VMM must still trap and fill pages

Memory allocation overhead

host Bl | XC E gVisor
BN Firecracker

—~ 6000 A
V)]

-

D 4000 -
S

= 2000 -

0 = T . E— | E—
4KB 8KB 16KB 64KB 256KB 1MB
mmap size

Figure 16. Total allocation+unmap time for 1GB

Blending Containers and Virtual Machines: A Study of Firecracker and gVisor. Anjali et. Al. VEE’20

What properties are desirable?

1. Isolation: The attack surface should be minimized
2. Density: Must be able to run as many instances as possible

3. Performance: Kernel overhead should be minimized; |/O
performance should be fully exposed

4. Compatibility: Should be able to run unmodified applications

Debate: How are we doing so far?

* [solation / Density / Performance / Compatibility
 g\/isor, Firecracker, LXC, Host Linux?

Conclusion

* Existing isolation mechanisms, surprisingly, increase the amount of
code that is typically executed

e But they decrease the amount of code that could be executed

* Firecracker guests access /O at a lower level, mostly yielding less
redundancy and better performance (relative to gVisor)

* Trapping system calls is costly for gVisor (even with KVM)
* No system performs well relative to kernel bypass

* We're building a better sandbox; come talk to us about final projects

