
6.5810: Serverless + Isolation
Adam Belay <abelay@mit.edu>

1



Serverless computing

• A new cloud programming model
• Key idea: Building applications without thinking about servers
• Function as a service (FaaS): Run a simple code function, let the cloud 

provider decide where and how to run it
• Typically, the function must be short (a few seconds or less) and 

consume relatively few resources (e.g., one core, 2GB RAM)
• Makes it easier for cloud provider to pack instances

• Scale automatically; pay per use
• Consequence: Multiple tenants on each machine



Agenda today

• Discuss the isolation and security aspect of serverless
• Explore new and recent ways of securing cloud applications
• gVisor and Firecracker

• Review the solutions to lab 1
• Lab 3 will be assigned later today



Isolation schemes studied in the paper

• Native Linux: System call boundary determines isolation
• Linux containers: Same, but each container has a separate namespace 

maintained by the kernel (e.g., a different filesystem)
• gVisor Containers: OS functionality implemented as a library OS inside

a Linux process. Library then makes a narrow set of system calls.
• Firecracker: Stripped down VMs, heavily paravirtualized
• Full VM: Guest kernel operates like a normal, complete kernel



Spectrum of OS functionality

Native
Linux

Linux
Container

gVisor
Container

Firecracker
MicroVM Full VM

Location of functionality
Host Guest



What is an attack surface?

• The sum of the different vectors where an attacker can try to break 
the isolation of a system
• One way of thinking: System calls are the attack surface
• This paper: Code coverage is the attack surface?



Linux containers

• A normal Linux process mostly; large attack surface (all system calls)
• cgroups provide resource limits, performance isolation, etc.
• chroot provides separate filesystem namespace
• Tools like docker make it easy to bundle and manage containers



gVisor architecture

Blending Containers and Virtual Machines: A Study of Firecracker and gVisor. Anjali et. Al. VEE’20



gVisor components

• Sentry: A userspace kernel, written in Go
• All system calls made by the application are redirected to the Sentry
• The sentry implements most system calls itself (supports 237 calls)
• However, it makes 53 system calls to the host to support its operation
• Seccomp filter restricts access to these calls

• App never directly makes host system calls (must go through sentry)
• Ptrace-mode: ptrace forwards syscalls to sentry
• KVM-mode: trap and handle system calls, forward to sentry (faster)

• Gofer: Provides sentry with access to file system resources
• The sentry cannot directly read or write any files



Seccomp filter

• Users can load custom code into the kernel without violating isolation
• Berkeley Packet Filter (BPF) provides a stripped-down, restricted 

assembly language that can be easily verified
• Fixed-length instructions, 32-bit, 1 accumulator, 1 index register

• BPF code can be used to filter which system calls (and the arguments 
passed to them) are allowed



Example seccomp filter

struct sock_filter filter[] = {
BPF_STMT(BPF_LD+BPF_W+BPF_ABS, syscall_nr),
BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, __NR_exit_group, 0, 1),
BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_ALLOW),
BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_KILL),

}



AWS Firecracker

Blending Containers and Virtual Machines: A Study of Firecracker and gVisor. Anjali et. Al. VEE’20



Firecracker components

• Uses a virtual machine, not a process (i.e., VT-x that we saw earlier)
• But still has somewhat of a Sentry, called the firecracker VMM
• Manages storage and net I/O through virtio, a software I/O queue

• MicroVMs run an extremely stripped-down Linux distro
• More details on firecracker in upcoming lecture



Allowed system calls

Blending Containers and Virtual Machines: A Study of Firecracker and gVisor. Anjali et. Al. VEE’20



Code coverage

Blending Containers and Virtual Machines: A Study of Firecracker and gVisor. Anjali et. Al. VEE’20



Code coverage venn diagram

Blending Containers and Virtual Machines: A Study of Firecracker and gVisor. Anjali et. Al. VEE’20



Networking bandwidth

Blending Containers and Virtual Machines: A Study of Firecracker and gVisor. Anjali et. Al. VEE’20



Network latency

Blending Containers and Virtual Machines: A Study of Firecracker and gVisor. Anjali et. Al. VEE’20



Memory management

• Two very different strategies
• gVisor’s sentry allocates memory in 16MB chunks using mmap()
• Firecracker’s guest manages its own guest-physical memory
• But VMM must still trap and fill pages



Memory allocation overhead

Blending Containers and Virtual Machines: A Study of Firecracker and gVisor. Anjali et. Al. VEE’20



What properties are desirable?

1. Isolation: The attack surface should be minimized

2. Density: Must be able to run as many instances as possible

3. Performance: Kernel overhead should be minimized; I/O 
performance should be fully exposed

4. Compatibility: Should be able to run unmodified applications



Debate: How are we doing so far?

• Isolation / Density / Performance / Compatibility
• gVisor, Firecracker, LXC, Host Linux?



Conclusion

• Existing isolation mechanisms, surprisingly, increase the amount of 
code that is typically executed
• But they decrease the amount of code that could be executed
• Firecracker guests access I/O at a lower level, mostly yielding less 

redundancy and better performance (relative to gVisor)
• Trapping system calls is costly for gVisor (even with KVM)
• No system performs well relative to kernel bypass

• We’re building a better sandbox; come talk to us about final projects


