
Log-structured Memory For 
DRAM-based Storage
Paper by Stephen M. Rumble et.al. 
Pics credit to the original paper and slides

Presenter: Qing Feng
MIT 6.5810

Nov 14, 2022



● A key-value in-memory storage
● Low-latency network for small 

objects (5 us read, 16 us write)
● Each storage server runs master 

and backup modules:
○ Master manages in-memory 

objects, serving requests
○ Backup stores copies of other 

masters in its local disk
● Central coordinator for config

Context: RAMCloud



For a high-performance storage system serving multiple applications over a 

long time, a memory allocator has to support:

● Fast allocation/deallocation

● High memory utilization

● Handle changing workloads

Motivation



Problem: Memory Utilization

Existing allocators under changing workloads waste at least 50% memory:



Non-copying allocators (e.g. malloc)

● Cannot move objects once allocated - general pointer usage
● Works well for apps with a consistent distribution of object sizes
● Vulnerable to fragmentation, thus lack efficient use of memory

Why Malloc Does Not Work



Copying allocators (e.g. JVM garbage collector)

● Inevitably have to scan all memory to update pointers - expensive
● Full scan postponed to accumulate garbage - low utilization
● Long pause time - hundreds of microseconds at best, too slow 

compared with request latency (a couple of microseconds)

Why Garbage Collector Does Not Work



Ideal memory allocator for a DRAM-based storage system:

● Copying - no fragmentation
● Incremental garbage collection - no full scan, free small regions 

independently

Key insight: In storage systems, pointers are confined to index structures 
where they can be located easily. (In this case, simply a hash table.) 

High-level Approach



Ideal memory allocator for a DRAM-based storage system:

● Copying - no fragmentation
● Incremental garbage collection - no full scan, free small regions 

independently

Key insight: In storage systems, pointers are confined to index structures 
where they can be located easily. (In this case, simply a hash table.) 

Question: Why general-purpose pointer usage couldn’t work? Any way to 
improve?

High-level Approach



What Is A Log?

Master server organizes its DRAM as a log, a data structure that:

● Is only sequentially written (append) at the log head
● Contains immutable objects and metadata
● Uniformly divided into segments



What Is A Log?

Master server organizes its DRAM as a log, a data structure that:

● Is only sequentially written (append) at the log head
● Contains immutable objects and metadata
● Uniformly divided into segments

Question: How are segments allocated?



How Does The Log Work?

● A hashtable maps (table, key) to the 
location of an object. Each live object 
has exactly one pointer in the entry

● Each segment is replicated on a 
different set of backups, so replicas of a 
log are scattered across the entire 
cluster

● Backups buffer data and write to disk 
in segments:
○ Writes do not wait for disk I/O
○ Disk bandwidth is used efficiently



How Does The Log Work?

● A hashtable maps (table, key) to the 
location of an object. Each live object 
has exactly one pointer in the entry

● Each segment is replicated on a 
different set of backups, so replicas of a 
log are scattered across the entire 
cluster

● Backups buffer data and write to disk 
in segments:
○ Writes do not wait for disk I/O
○ Disk bandwidth is used efficiently

Question: How do backups ensure buffers survive crashes?



Log Metadata

In addition to object data, three types of metadata are needed:

● Each object contains its self-identification: table ID, key, version 
number, etc., to rebuild the hash table during crash recovery

● Each new segment has a log digest, a list of all live segments’ IDs, to 
avoid a central repository of log information

● Deleted objects are marked by tombstones appended in the log, to 
avoid surrection during recovery (tombstones are garbage collected only 
when the deleted objects are removed)



Log Metadata

In addition to object data, three types of metadata are needed:

● Each object contains its self-identification: table ID, key, version 
number, etc., to rebuild the hash table during crash recovery

● Each new segment has a log digest, a list of all live segments’ IDs, to 
avoid a central repository of log information

● Deleted objects are marked by tombstones appended in the log, to 
avoid surrection during recovery (tombstones are garbage collected only 
when the deleted objects are removed)

Question: If no crash recovery required (e.g. using 
NVRAM), can save most metadata overhead?



Log Cleaner

Incremental copying garbage collector:

● Cost-benefit segment selection
○ Choose segments with lower utilization to free
○ Avoid edge cases where cleaning uses more space than it frees



Log Cleaner

Incremental copying garbage collector:

● Cost-benefit segment selection
○ Choose segments with lower utilization to free
○ Avoid edge cases where cleaning uses more space than it frees

Question: Is log structure still prone to 
fragmentation?



Log Cleaner

Incremental copying garbage collector:

● Concurrent log updates
○ Write survivor data to different segments (side log) than the log head
○ Multiple cleaner threads run in parallel, update the log using log digest
○ Separate segments avoid contention for single set of backup disks



Cleaning Cost

A fundamental trade off between space and time: the higher the memory 
utilization, the more expensive the cleaning cost, eventually the system 
will run out of bandwidth



Cleaning Cost

A fundamental trade off between space and time: the higher the memory 
utilization, the more expensive the cleaning cost, eventually the system 
will run out of bandwidth

Question: Is disk bandwidth first run out?



Two-level Cleaning

Key insight: conflicting needs between memory and disk, different policies 
are desired for the two levels of storage

● Disks are bottlenecked by bandwidth, memory by utilization
● Memory can be cleaned without reflecting the updates on backups
● Memory can afford high bandwidth for cleaning, disks can tolerate 

lower utilization due to less frequent cleaning



Segment Compaction

Compacts a single segment at a time by copying live objects to a smaller 
region of memory and freeing the original segments - save disk bandwidth

Problem: Variable-length segments - introducing seglets (64KB fixed-size)



Combined Cleaning

Frees cleaned segments on both memory and disk

Advantage: Combined cleaning is postponed and the effect of cleaning is 
accumulated



Parallel Cleaning

There are only three synchronization points in the system:

● Log head - introducing side log
● Update the hash table - fine grained locks on individual hash buckets
● Must not free segments in active use by service threads - no additional 

locks required, fixed by wait-for-readers primitive and generations



Deadlock Prevention

Cleaners use free space to free space, will deadlock otherwise

Solution: Reserving a special pool of seglets for cleaners, freed space are 
first used to replenish the cleaner pool

Cleaner appends a new log digest to free segments, can deadlock

Solution: Reserving two special emergency head segments that contain 
only log digests, alternate between the two 



Evaluation: Throughput Vs. Memory Utilization

1 master, 3 backups, 1 client, 
concurrent multi-writes

● On high memory utilization 
(80% - 90%), tolerable 
performance degradation

● However, throughput is not 
very impressive? (Recall FDS 
achieves up to 100MB/s on 
single disk)



Evaluation: Two-level Cleaning

1 master, 3 backups, 1 client, concurrent 
multi-writes (except the “Sequential” curve)

● Two-level cleaning significantly 
improves performance, especially on 
high utilization (80% - 90%)



Evaluation: Two-level Cleaning

1 master, 3 backups, 1 client, concurrent 
multi-writes (except the “Sequential” curve)

● Two-level cleaning significantly 
improves performance, especially on 
high utilization (80% - 90%)

Question: Assuming bottlenecked by disk 
bandwidth on one-level cleaning (or even on 
two-level cleaning), would a faster 
disk-storage layer (e.g. FDS) help?



Evaluation: Latency

With vs. without cleaner, 
request latency remains 
almost the same up to 99.9th 
percentile

● Negligible median latency 
introduced 

● Tail latency sources: 
contention for the NIC, 
RPC queueing delays in 
the single-threaded 
backup servers



Discussion

● Can log-structured memory be adapted for more general usage than 
storage systems? How?

● Better ways of replication?
○ A separate layer of disk storage, like FDS?
○ Using NVRAM?

● Metadata overhead - already very good, or still can be improved? 
● Compression? - another form of space-time trade-off
● Workloads change over time - cleaning more aggressively during periods 

of low load?



Log-structured Memory For 
DRAM-based Storage
Paper by Stephen M. Rumble et.al. 
Pics credit to the original paper and slides

Presenter: Qing Feng
MIT 6.5810

Nov 14, 2022


