6.5810: Nsight

Adam Belay <abelay@mit.edu>

CsAIL

Motivation

* Many developers are building systems that require low latency
* But no tools exist to systematically diagnose latency problems

* Existing statistical profilers (e.g., perf-tool) are great at attributing
CPU use, but can’t measure latency

Problems with existing tools

1. Some latency deviations are caused by the NIC; not in software
2. Existing tools have high overhead (often called time dilation)
3. Difficult to trace everything; tools focus on specific parts

What is Nsight?

* Track the entire lifetime of network requests and identify the precise
reasons for latency deviations

* Networking side: NIC timestamps
e CPU side: CPU profiling (Intel-PT)

t see deviations....

/]

Problem with perf: Can

> R = ——— b—— -4
— — — . — . — -
— PEEEaEe

—

lll-“ln.r
— e e . e
T — -

wvl Hl\-'
0 mEoEmmEe e

Quick aside: What is Intel PT?

* Intel Processor Trace; a brand-new hardware feature this year
* Does not require any source code modification

 Monitors instruction stream of a core...
 Whenever a branch instruction is encountered (e.g., call, ret, jmp, je, etc.)...
e Records a record to a FIFO in DRAM; highly compressed format

FIFO Buffer in DRAM
Record control flow and

timestamps

Q: Does Intel-PT have overhead?

Using Nsight: Request-level view

Latency [us]

ZUU

b
o)
o

—h
-
-

o)
-

-

0

25000

» CPU Idle (A
A NIC Delay (R)

50000
Message |D

75000

100000

Using Nsight: Message lifetime

ferare] [fepvarcy [teprecvmss
— — M
S | S S —
pet_iterm) _libc_send

' I B N
¥
call_function_single_interrupt event_handler event_handler
M2 | N\ Kernel Application

MZ(n) MZ(h) Handle M(a)

N Anomalous App Recv 1 Request, App Send , App Recv 2
o | e s

Challenge #1: Clocks can be adjusted

* Synchronizing clocks on different devices is hard in general
* Nsight needs to respond to clock adjustments from NTP

* Solution: Nsight recallibrates whenever time is adjusted

* An entire core is burned to poll for changes to the clock

* Q: Why not use CLOCK_MONOTONIC_RAW instead?

Challenge #2: How to track messages?

* Easy to time packets but hard to integrate timing with host stack
* Solution: NSight records timings of various entry/exit points

* NIC timestamp (N); core handoff (H); application handoff (A)

e Sufficient to produce a single timeline of each message

 Relies on a kernel boundary (i.e., a function) that is called when
processing is done and handoff to application will happen

Challenge #2: How to track messages

N=NIC Timestamp

H=Hand-off Timestamp | “Kernel || App |
A=Application Timestamp
M=Message
CPU Core X I : : * 1 I |
Hardware
profiling | Core ¥ [h*TWZl::l
1
NIC Time-
NSight | Stamps b, la () I
Profiling - | |
ime-
stamps | | 2)
Mi(h) M*(h) M%(a) M4(a)
Core Core
Y>Y X->Y
' |
m e ﬂ_ll
NSight L'fet'meMl(n) 1 M2(h) M(a)
Output M2
Lifetime M2(n) M2(h) M2(a)

L Overlap M* and M?

Time)

Q: What is a message?

* Are packets messages?
* How are messages tagged?

Challenge #3: Nested function calls

* Need to identify functions as the root cause (on the CPU side)
* If the callee takes longer than normal, so will the caller

* Solution: If nested calls take more than 80% of the time of the parent,
don’t flag the parent as an anomaly, only the children

Nsight components

1. CPU hardware profiler

* Use Intel-PT to record and timestamp all branch instructions

2. Shim layer
LD _PRELOAD all socket system calls to collect entry to app timestamp

3. NIC timestamps
* Record packet arrivals into the system

*Also, a dedicated core polls for time config changes

Nsight components

= App || App App App
©|O |Thread || Thread Thread || Thread
al
ELS_ + recv() + - + send()+ -
2l [Shim Layer@ [Shim Layer@
e < [Socket APl | [Socket API |
g é | Syscall APl | | Syscall APl |
o [
S Userspace ,é'
------------------------------- 8
?’:‘?‘?Ti‘.’.a.‘f‘?....é..-.‘ emespacey o8
Kernelspace @ Kernel Stack]8 g
sk_data_ready() A [Socket Queues | Q-.g
uDP TCP Qfc
a Kernel Stack <£ IE
[] &)
I% Q| [Socket Queues | >’f
°18 | _uwop || TcP | ll|||Queueing
% ol IP | lIf [Discipline
2>)
sl U napi_gro_receive()* ndo _start_xmit()
S| @ | Dri
=
& o Kernel Driver Kernel(D_n)ver
— K V =
(4 ’ NIC { : s

Limitation: Cannot be used continuously

* To capture random events across time, users must turn on NSight
repeatedly. We have ambitions of using NSight for continuous
profiling, but the current buffering implementation in Intel-PT limits
such use.

* Why is this?
 Does it matter?

How high is profiling overhead?

All numbers in us. h = high load, 1 = low load
Tool median (h) 99.9th (h) median (1) 99.9th (1)

Baseline 30.3 112.6 10 14.4
Intel-PT | 30.8 (2%) 120.4 (7%) 10.6 (5%) 15.3 (6%)
NSight | 31.1 B3%) 1328 (18%) 11 (10%) 16.2 (12%)

eBPF-1 | 38.6 (27%) 157.6 (40%) 11.8 (18%) 17.3 (20%)
eBPF-2 | 41.8 (38%) 165 (46%) 13.2(31%) 18.6(29%)
eBPF-4 | 51.9 (71%) 556 (393%) 14.1 (41%) 19.4 (35%)
eBPF-8 | 59.1 95%) 565 (402%) 15.5 (54%) 21 (45%)

Ftrace [201.8 (565%) 1060 (841%) 40.1 (298%) 66.4 (359%)

Memcached latency in microseconds

Can Nsight identity root causes?

15000

10000

5000

Latency [us]

25000

® HOL blocking §A /OS threads (A)

A HOL blocking

B NGINX (A
-+ OS threa-s (A)/HOL blocki.ng (A)

50000
Message ID

75000

APRRIN

A)/Receive processing (A)

100000

Discoveries from using Nsight in diff. configs

1. Memcached can introduce high latencies by batching many
requests together on each thread
* Solution: Expose more request parallelism

2. NUMA page migration causes latency spikes
 Solution: Unclear

3. Connection set up hands of TCP socket to different thread

* Thread wakeup causes occasionally large delays
* Solution: Need a better CPU scheduler

4. Core pinning can cause CPU overload
e Solution: Don’t pin, and need a better CPU scheduler

Limitations

* Dedicated core for polling time configuration changes
* Cannot be used for continuous profiling
* Analysis time is dominated by huge dataset produced by Intel PT

e Cannot capture small (nanosecond) timescale events
* Does this matter?

