
6.5810: Nsight
Adam Belay <abelay@mit.edu>

1



Motivation

• Many developers are building systems that require low latency
• But no tools exist to systematically diagnose latency problems
• Existing statistical profilers (e.g., perf-tool) are great at attributing 

CPU use, but can’t measure latency



Problems with existing tools

1. Some latency deviations are caused by the NIC; not in software
2. Existing tools have high overhead (often called time dilation)
3. Difficult to trace everything; tools focus on specific parts



What is Nsight?

• Track the entire lifetime of network requests and identify the precise 
reasons for latency deviations
• Networking side: NIC timestamps
• CPU side: CPU profiling (Intel-PT)



Problem with perf: Can’t see deviations….



Quick aside: What is Intel PT?

• Intel Processor Trace; a brand-new hardware feature this year
• Does not require any source code modification
• Monitors instruction stream of a core…
• Whenever a branch instruction is encountered (e.g., call, ret, jmp, je, etc.)…
• Records a record to a FIFO in DRAM; highly compressed format

Core

------------
------------
------------
------------
------------
------------

Record control flow and 
timestamps

FIFO Buffer in DRAM



Q: Does Intel-PT have overhead?



Using Nsight: Request-level view



Using Nsight: Message lifetime



Challenge #1: Clocks can be adjusted

• Synchronizing clocks on different devices is hard in general
• Nsight needs to respond to clock adjustments from NTP
• Solution: Nsight recallibrates whenever time is adjusted
• An entire core is burned to poll for changes to the clock
• Q: Why not use CLOCK_MONOTONIC_RAW instead?



Challenge #2: How to track messages?

• Easy to time packets but hard to integrate timing with host stack
• Solution: NSight records timings of various entry/exit points
• NIC timestamp (N); core handoff (H); application handoff (A)
• Sufficient to produce a single timeline of each message
• Relies on a kernel boundary (i.e., a function) that is called when 

processing is done and handoff to application will happen



Challenge #2: How to track messages



Q: What is a message?

• Are packets messages?
• How are messages tagged?



Challenge #3: Nested function calls

• Need to identify functions as the root cause (on the CPU side)
• If the callee takes longer than normal, so will the caller
• Solution: If nested calls take more than 80% of the time of the parent, 

don’t flag the parent as an anomaly, only the children



Nsight components

1. CPU hardware profiler
• Use Intel-PT to record and timestamp all branch instructions

2. Shim layer
• LD_PRELOAD all socket system calls to collect entry to app timestamp

3. NIC timestamps
• Record packet arrivals into the system

*Also, a dedicated core polls for time config changes



Nsight components



Limitation: Cannot be used continuously

• To capture random events across time, users must turn on NSight
repeatedly. We have ambitions of using NSight for continuous 
profiling, but the current buffering implementation in Intel-PT limits 
such use.
• Why is this?
• Does it matter?



How high is profiling overhead?

Memcached latency in microseconds



Can Nsight identify root causes?



Discoveries from using Nsight in diff. configs

1. Memcached can introduce high latencies by batching many 
requests together on each thread
• Solution: Expose more request parallelism

2. NUMA page migration causes latency spikes
• Solution: Unclear

3. Connection set up hands of TCP socket to different thread
• Thread wakeup causes occasionally large delays
• Solution: Need a better CPU scheduler

4. Core pinning can cause CPU overload
• Solution: Don’t pin, and need a better CPU scheduler



Limitations

• Dedicated core for polling time configuration changes
• Cannot be used for continuous profiling
• Analysis time is dominated by huge dataset produced by Intel PT
• Cannot capture small (nanosecond) timescale events
• Does this matter?


