6.5310: PICNIC

Adam Belay <abelay@mit.edu>

CsAIL

Logistics

* Next week: Draft project report is due
* Describes the motivation and design of your system
* Can be short, target 2-4 pages

* Implementation and evaluation will be in the final report

Motivation for PicNIC

* So far, the focus has been on raw net performance and efficiency
* But clouds have multiple tenants that share the network
* PicNIC focuses on providing performance isolation

* Unusual challenge: CPU is processing network packets for VMs

* Authors observe contention inside the “host stack”
* Usually, the host stack runs on a limited set of cores

Example

* One VM is experiencing a denial-of-service attack

* Host stack becomes congested, spends all cycles processing DOS
attack packets

* All other VMs on the same machine experience high latency
* This is a breakage of performance isolation

Network virtualization?

* Key idea: Give cloud users the abstraction of their own private
network on top of a physical network

e Host stack translates virtual IP addresses to real IP addresses via
encapsulation

~ Egress Engme (SW+HW)’ Ingress Engine (SW+HW) |
VM @ G > VM |
H’ = O - - NS Ingress ‘
Egress & | (I o | = -
‘ ez | = |7 Processing
VM _J_,_Processmg Eaninaih > VM
@ e O @ Host ®

Figure 1: Overview of an on-host network virtualization stack.

Example incident (egress)

k5
o £3, = 99th perc.
°N 3 W 1 ‘; \ = =+ Median
cD E | Throttled UDP flow starts
V) +
_T_T o = 99th perc.
T:l.i.“’u?l /——’ __________ . S = =+ Median

Sa T35~ \ Delay increases and
L © 0 y
T — throughput decreases
o 221 <— for unthrottled flows/ == Throughput
< & gnp
=l =2 s
-

oo @ 90 :

= lo_: £ 25 Ping RTT

a 0

0 10 20 30 40 50 60 70

Time (s)
Figure 2: HoL blocking and isolation breakage at egress.

PicNIC’s design principles
1. Host stack resources should be proportional to each VM’s SLO

2. Under overload, apply backpressure, otherwise drop early

Defining predictability

Metric

Predictable vNIC SLO

Bandwidth min. and max. envelope (hose model)

Delay
Loss rate

Low; predictable distribution

*

fic*

No drops for cooperating traf

“for well-behaved traffic in bandwidth envelope
Table 2: Abstraction: Predictable vNIC SLO metrics

Design overview

.. compute rate-limits for senders

....................... congestion '
Packet consolidate multiple """ control (share BW & CPU cycles based on SLO) 5 Guest
accountin imi —
g4 _________ rate limits NIC Tx o NIC Rx
Egress :I:I _g :I:I . q Ingress
tTS processing © : CWFQs | processing
Set egress Timing wheel : |
timestamp ming W _’ll"“
Guest out—of—ordgr _______________ measurement framework _» Guest
T hackpressure to guest 0§ completions " Egress Host Ingress Host ~ (CPU cycles, bandwidth, delay, ---)

Figure 5: PicNIC architecture. Local constructs (ingress CWFQs and egress sender-side admission control) working in coherence with end-to-end receiver-
driven congestion control to achieve the predictable vNIC abstraction.

ldea: Ingress CPU-Fair WFQs (CWFQs)

* Pull ingress (RX) packets from NIC as fast as possible
* Place packets in per-VM queues
* Calculate per-packet processing overhead in each queue

* Allocate CPU resources in a weighted but fair way across VMs

|dea: Congestion control

 Combination of rate limiters at sender
* Set bandwidth per second limit to control bandwidth use
» Set packets per second limit to minimize CPU use and delay

* Congestion control is left off for low load VMs
* High load VMs experience delays in their CFWFQs
e Use this delay as a signal to control transmit rate at sender

|[dea: Egress admission control

 Traffic shapping: Controls the rate of packet transmissions

* PicNIC uses a timing wheel; a data structure that stores packets by
their transmission timestamp

* Problem: VM guests can spam egress packets

* Solution #1: PicNIC places a limit on buffer use to avoid too many
buffers waiting in the timing wheel

* Solution #2: PicNIC applies backpressure to VMs so they can
voluntarily stop sending

Backpressure inside the guest OS

* Note: Guest OS is willing participant in this scheme; many
modifications were made to Linux

e #1: PicNIC sends out-of-order completions when each packet leaves
the wheel

e #2: TCP small queues (TSQs) limits the number of packets each flow
can have in flight

Q: Why can PicNIC not use in-order
completions?

* Note: In order completions are the normal approach used by NICs

Q: What happens if the buffer limit is hit?

Egress admission control design

Guest IP Stack

Packets y *O0O0 Completion
Guest NIC driver (virtio) <«— NAPI-TX:
G”"'Stl e Reduced buffer bioat
Host PABKELS "~. (Out of Order Completions)
PicNIC CC Shaping) 000 VirtlO:
i \/No HoL blocking
Other Shaping (e.g. BWE) /' between flows
N ,’/ Accounting:
Per-VM Buffer Accounting / VMs buffering isolation
. Timing Wheel / O00 Completion
...................... A——
NIC

Figure 6: PicNIC’s sender-side admission control.

Back to the UDP flow overload problem

w

< UDP flow startsatt = 0 Al HAI

p—

PCCP throttles UDP immediately FR

Rate limit (Mpps)
DN

A | Mean: 9.05us Median: 8.54us 99th perc.: 13.25us

215

> l

S10 -

3

2

g > Delay threshold = 10us

%0 0

— 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

Figure 10: Predictable low latency with PicNIC.

j — S |

Contribution of PicNIC’s mechanisms

1.00 rrrrremmerre e bt Yl YO e st e e e <P
5 B > CWFQ

=0=:CWFQ + PCCB
0.50 —>& + Light workload

=—O=PicNIC

== Perfect isolation ={_==No Isolation
0.00
0 200 400 600 800

Response latency (us)

99th perc. latency (ps)

Discussion

* Could we put PicNIC in hardware? What parts?
* How does PicNIC compare to Ethernet PFC?

* Do RDMA NICs have the same problem of unpredictable packet
processing work? Do packets consume resources? Does 1IRMA?

* Are there any downsides to out-of-order completions or TCP small
gueues?

Deeper discussion

* Should VMs participate in congestion control at all?
* Why or why not?

