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Logistics

• Reminder: Send paper questions before each lecture!
• This includes Wednesday’s lecture

• Signing up for paper presentations is past due
• If you haven’t yet, please notify us ASAP



Agenda today

• High-level overview of queueing theory
• Tail latency
• Cores that don’t count



Kendall’s notation

• A/S/c
• A: Arrival process
• S: Service time distribution
• c: Number of workers

Some useful examples:
• M (Markovian):

• Poisson process: Exponential interarrival; exponential service time
• D (Degenerate):

• Deterministic: Fixed interarrival process; or fixed service time
• G (General)
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Queueing disciplines

• The priority order that jobs in the queue are served
• Many disciplines are possible!
• Some examples: FIFO, PLIFO, PS, SRTF
• Kendall notation update -> A/S/c/D, where D is the discipline

Some terminology
• Preemptive -> can interrupt the worker to switch jobs
• Work conserving -> the worker is always busy if there are jobs



Q: What minimizes average completion time?

• i.e., minimize the sum of completions time -> 1|| ∑𝐶j



Q: What minimizes average completion time?

• i.e., minimize the sum of completions time -> 1|| ∑𝐶j

• SRTF does! There is a proof!



Q: What minimizes tail completion time?



Q: What minimizes tail completion time?

• In general, no single non-learning policy can
• However, if you know the service time behavior…
• Light tailed: <= exponential distribution
• Intuition: Finish the heavy requests fast, they determine the tail
• Optimal discipline: FIFO

• Heavy tailed: > exponential distribution
• E.g., log-normal and pareto distribution
• Intuition: A heavy request will take so long that it’s better for the tail to 

handle another request instead
• Optimal discipline: SRPT, PS, etc.



Closed vs. open queueing systems
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Closed vs. open queueing systems
Closed Open

Open Versus Closed: A Cautionary Tale. Schroeder et. Al. NSDI’06



Q: Which is better?
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Simulating queueing policies

ZygOS: Achieving Low Tail Latency for Microsecond-scale Networked Tasks. Prekas et. Al. SOSP’17



Problem: Modern CPUs have tons of cores

• Hashing and spreading work across cores has poor tail behavior
• But using a centralized queue has high synchronization overhead
• What should we do?



Solution: Work stealing

Waiting area Worker

Waiting area Worker

Waiting area Worker
1. Workers with empty queues search for

work (at random) in other worker’s
queues

2. Then it steals half the work
Approximates M/G/n, but low overhead!

Don’t do work shedding!
Formal proof that work stealing has 
optimal messaging costs; intuition -> only 
idle cores send messages
See “Scheduling Multithreaded 
Computations by Work Stealing” Blumofe
et. Al.



Debate: Is low tail latency achievable at scale?



How can we make systems tail tolerant?

• Hedged requests: Issue the same request to multiple replicas, use the 
result from whichever responds first
• Can wait e.g., 95% of typical response time before issuing backup request to reduce 

resource use, but this also reduces benefit
• Tied requests: Issue both requests… When one replica finishes, cancel the 

other request (if it hasn’t started yet)

Challenge overall: Extra resource consumption, through replication + request 
handling and cancelling
And overhead can’t be reduced for very short requests.



Fail-stop processors

• “A fail-stop processor never performs an erroneous state 
transformation due to a failure. Instead, the processor halts and its 
state is irretrievably lost.” – Fred Schneider
• Today: What happens when processors are not fail-stop?



Silent data corruption (SDC) 

• Well known problem; happens at scale
• Historically cosmic rays may have been the predominant cause
• e.g., roughly one error per month in 256 MB RAM
• But this paper reveals the issue is more complex now



Mercurial cores

• Cores with defects not detected during manufacturing
• A few cores per several thousand machines
• Cannot necessarily be mitigated by microcode updates
• May be associated with specific components; typically, specific cores
• Silent data corruption: Only symptom is erroneous computation



Why now?

• Authors speculate smaller feature sizes + more complexity in chip
design are pushing up error rates
• Normally chip designers formally verify components are correct
• Some mercurial cores may only start to misbehave after they age



Some examples

• Violations of lock semantics
• Data corruption on load, store, vector, or coherence operations
• Deterministic AES mis-computation
• Corruption during garbage collection
• Database index corruption on some cores but not others
• Repeated bit-flips in strings at a particular position
• Corruption of kernel state



Why are compute errors different?

• Disks lose blocks all the time! Very unreliable overall
• But with disks or networks the “right answer” is obvious
• It’s the identity of the data you’re storing or transporting
• That means checksums and coding-based techniques work great



Why is this happening?

• Steady increase in complexity
• Nanometer CPU features leave smaller margin for error
• CPUs are transforming into sets of discrete accelerators around a

shared register file
• This increases the surface of behaviors to verify

• Sometimes strongly frequency sensitive, sometimes not
• Sometimes lower frequencies trigger errors (b.c. voltage changes too)



Debate… could some mercurial errors be SW?

• How can we avoid false positives?



Conclusion

• Bridging theory and practice can yield systems with great tail behavior
• But systems must still be tail tolerant, i.e., tolerant to high tail latency
• CPUs are becoming less reliable as they get more complex and 

smaller; new systems challenges emerging


