6.5810: Tail latency + Cores
that don’t count

Adam Belay <abelay@mit.edu>

CsAIL




Logistics

 Reminder: Send paper questions before each lecture!
* This includes Wednesday’s lecture

* Signing up for paper presentations is past due
* |f you haven’t yet, please notify us ASAP



Agenda today

* High-level overview of queueing theory
* Tail latency
* Cores that don’t count



Kendall’s notation

o A/S/C Waiting area Worker

* A: Arrival process Arrivals
e S: Service time distribution —>
e c: Number of workers

Some useful examples:
M (Markovian):

* Poisson process: Exponential interarrival, exponential service time
* D (Degenerate):

e Deterministic: Fixed interarrival process; or fixed service time

* G (General)



Queueing disciplines

* The priority order that jobs in the queue are served

* Many disciplines are possible!

* Some examples: FIFO, PLIFO, PS, SRTF

* Kendall notation update -> A/S/c/D, where D is the discipline

Some terminology
* Preemptive -> can interrupt the worker to switch jobs

* Work conserving -> the worker is always busy if there are jobs



Q: What minimizes average completion time?

* i.e., minimize the sum of completions time -> 1{| >, C;



Q: What minimizes average completion time?

* i.e., minimize the sum of completions time -> 1{| >, C;
* SRTF does! There is a proof!



Q: What minimizes tail completion time?



Q: What minimizes tail completion time?

* In general, no single non-learning policy can
* However, if you know the service time behavior...

* Light tailed: <= exponential distribution
* Intuition: Finish the heavy requests fast, they determine the tail
e Optimal discipline: FIFO

* Heavy tailed: > exponential distribution
* E.g., log-normal and pareto distribution

* Intuition: A heavy request will take so long that it’s better for the tail to
handle another request instead

* Optimal discipline: SRPT, PS, etc.



Closed vs. open queueing systems

Closed

Clients k

/Q\ Receive

Send

L

Arrivals

Waiting area

>

Worker

C}

Open

Waiting area

Arrivals
—_—

Worker

Ox



Closed vs. open queueing systems

Closed
20 , |

— ) e FCFS
3 ---- PS
= —— PSJF
= 15
=
|—
(ab]
210
()
(N
(7p]
D
o
— 5
(q 0]
(«b)
2 .

O = i g i e e e e IR ______. ————

e 0= 0.4 0.6 0.8

Load

Open Versus Closed: A Cautionary Tale. Schroeder et. Al. NSDI'06

Open
20 |
— | FCFS
3 ---- PS
> 15| — PSJF
=
l_
O
210
o
O
D
[«b]
o
— 5 )
(q 0]
[«b]
2 —_,—”
O """"""" __=L”" . I
2 G D= 0.6 0.8
Load




Q: Which is better?

3xM/G/1 M/G/3
Waiting area Worker Workers
Waiting area
Waiting area Worker
Arrivals
—>

Arrivals ~

Waiting area Worker




Simulating queueing policies

e 16XM/G/1/PS

e 16XM/G/1/FCFS

e M/G/16/FCFS

— M/G/16/PS

14 - 14 -

12 - 12 -

10 - 10 -
>
S 8- 8 -
2
©
~ 6 6 -

4 4. 5

2 2 - 2 -

0 T T 1 r O T 1 T r O T T T T

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
Load Load Load
(a) Deterministic (b) Exponential (¢) Bimodal-1
Figure 2: Simulation results for the 99" percentile tail latency for four service time distributions with S = 1.

ZygOS: Achieving Low Tail Latency for Microsecond-scale Networked Tasks. Prekas et. Al. SOSP’17

14

12

10

T T
0.25 0.50

Load
(d) Bimodal-2

T
0.75

T
1.00



Problem: Modern CPUs have tons of cores

* Hashing and spreading work across cores has poor tail behavior
* But using a centralized queue has high synchronization overhead
* What should we do?



Solution: Work stealing

Waiting area Worker .
1. Workers with empty queues search for

work (at random) in other worker’s

..‘ queues

2. Then it steals half the work
Approximates M/G/n, but low overhead!

Waiting area Worker

Don’t do work shedding!

Formal proof that work stealing has
optimal messaging costs; intuition -> only
idle cores send messages

See “Scheduling Multithreaded
Com‘outations by Work Stealing” Blumofe

.‘ et. Al.

Waiting area Worker




Debate: Is low tail latency achievable at scale?



How can we make systems tail tolerant?

* Hedged requests: Issue the same request to multiple replicas, use the
result from whichever responds first
e Can wait e.g., 95% of typical response time before issuing backup request to reduce
resource use, but this also reduces benefit

* Tied requests: Issue both requests... When one replica finishes, cancel the
other request (if it hasn’t started yet)

Challenge overall: Extra resource consumption, through replication + request
handling and cancelling

And overhead can’t be reduced for very short requests.



Fail-stop processors

* “A fail-stop processor never performs an erroneous state
transformation due to a failure. Instead, the processor halts and its
state is irretrievably lost.” — Fred Schneider

* Today: What happens when processors are not fail-stop?



Silent data corruption (SDC)

* Well known problem; happens at scale

* Historically cosmic rays may have been the predominant cause
e e.g., roughly one error per month in 256 MB RAM
* But this paper reveals the issue is more complex now



Mercurial cores

* Cores with defects not detected during manufacturing

* A few cores per several thousand machines

e Cannot necessarily be mitigated by microcode updates

* May be associated with specific components; typically, specific cores
* Silent data corruption: Only symptom is erroneous computation



Why now?

* Authors speculate smaller feature sizes + more complexity in chip
design are pushing up error rates

* Normally chip designers formally verify components are correct

 Some mercurial cores may only start to misbehave after they age



Some examples

* Violations of lock semantics

e Data corruption on load, store, vector, or coherence operations
* Deterministic AES mis-computation

* Corruption during garbage collection

e Database index corruption on some cores but not others

* Repeated bit-flips in strings at a particular position

e Corruption of kernel state



Why are compute errors different?

* Disks lose blocks all the time! Very unreliable overall

e But with disks or networks the “right answer” is obvious
* |t's the identity of the data you’re storing or transporting
* That means checksums and coding-based techniques work great



Why is this happening?

e Steady increase in complexity
* Nanometer CPU features leave smaller margin for error

* CPUs are transforming into sets of discrete accelerators around a
shared register file
* This increases the surface of behaviors to verify

* Sometimes strongly frequency sensitive, sometimes not
* Sometimes lower frequencies trigger errors (b.c. voltage changes too)



Debate... could some mercurial errors be SW?

* How can we avoid false positives?



Conclusion

* Bridging theory and practice can yield systems with great tail behavior
* But systems must still be tail tolerant, i.e., tolerant to high tail latency

* CPUs are becoming less reliable as they get more complex and
smaller; new systems challenges emerging



