
Integrating Unikernel
Optimizations

in a General Purpose OS

Ali Raza, Thomas Unger, Matthew Boyd, Eric Munson,
Parul Sohal, Ulrich Drepper, Richard Jones,

Daniel Bristot de Oliveira, Larry Woodman, Renato Mancuso,
Jonathan Appavoo, Orran Krieger

General Purpose Operating Systems

Advantages

● Rich application support
● Wide hardware support
● Vast ecosystem of tools, utilities
● Community of developers,

operators and performance
engineers

2

Limitations

● Designed for the general case
● Overhead of security and resource

multiplexing

Unikernels

Advantages

● Designed to support a single
application

● Optimizations include
○ no ring transition overheads
○ zero copy paths
○ custom scheduling and preemption

policies
○ direct access to hardware etc.

● Lightweight and resource efficient

Limitations

● Small or non-existent community
● Lack of application and hardware

support
● Mostly virtualized, single processor

deployment
● Lack of support for utilities and tools
● Untested code base

3

Research Space
General Purpose OS

Linux, Windows,
NetBSD etc.

Incremental Systems

KML, Lupine Linux,
X-Containers

4

Forks of General
Purpose OS

LKL, Drawbridge,
Rump Kernel

Clean Slate Unikernels

MirageOS, EbbRT,
HermiTux, Unikraft

etc.

User
Code

entry code exit code

Kernel Arch
Independent Code

Arch Dependent Code

User-mode

Kernel-mode

Opt.
User
Code

call/ret

Virtual Hardware

User Code

Kernel Arch
Independent Code

Glue Code

Platform Abstraction
Code

User-mode

Kernel-mode

Hardware

Platform

Kernel Arch
Independent Code

Arch Dependent Code

User Code

Kernel-mode

Virtual Hardware

User-mode

User Code

entry code exit code

Kernel Arch
Independent Code

Arch Dependent Code

Kernel-mode syscall sysret

Hardware

Old code New code

Motivation

● Is it possible to integrate unikernel
optimizations in a general purpose
OS without forking the code base?

● Would it be possible to preserve the
battle tested code, development
community, application and
hardware support?

● Would there be any performance
benefit?

5

UKL?

General
performance

Specialized performance

Code,
Community,

Compatibility

New code,
Small Comm.,
Low compat.

MirageOS,
EbbRT

HermiTux,
Unikraft etc.

LKL,
Drawbridge,

Rump Kernel

Lupine,
X-Containers

Linux

Design: UKL Base Model

● Unikernel-aware version of Linux
● Geared towards functionality and stability, not

necessarily performance
● Like unikernels

○ link user code with kernel code
○ replace syscalls with function calls

● Unlike unikernels
○ preserve application and hardware compatibility
○ preserve support for multiple processes
○ preserve address space layout
○ maintain distinct execution models for user code and kernel

code

6

User-mode

User Code

entry code exit code

Kernel Arch
Independent Code

Arch Dependent Code

Kernel-mode syscall sysret

Hardware

UKL User
Code

function calls

Design: UKL Base Model

● Preserve address space layout
● unmodified user and kernel memory allocators
● UKL user ELF binary is loaded with the kernel

7

 Heap mmap area Stack vmalloc area user + kernel binary

Design: UKL Base Model

● Distinct execution models
● Decouple execution model from privilege level

8

User Execution Model

● large, dynamically sized
stacks

● Thread local storage
● Red Zone supported
● Requires preemption
● libc’s routines e.g., memcpy

Kernel Execution Model

● fixed sized pinned stacks
● Per CPU memory
● Red Zone not supported
● Can execute

non-preemptible
● RCU handling
● kernel routines e.g.,

memcpy

Privilege Level

Execution

model

Unikernel Optimizations: Bypassing entry/exit code

● transitions between kernel and user code are
expensive

● a configuration option to skip transition
code

● do so while keeping a separation between
execution models

● ability to selectively execute functionality
e.g., stack switch, signal handling etc.

● automatic normal path execution after a
number of bypasses

9

kernel entry point

RCU Code

System-call stub
through a jump table

Stack switch

Save Register
State

System Call handling

Scheduling decision
Signal Handling

RCU Code
FP state restore

etc.

sysret/iret

Stack switch

Restore Register
State

Switch
to

kernel
model

Switch
to user
model

Unikernel Optimizations: Bypassing entry/exit code

10

Unikernel Optimizations: Avoid Stack Switches

● Assembly code for transition breaks compiler view
● Stops cross layer optimization e.g., LTO
● Avoid stack switches, keep user stack for user and kernel code
● Kernel code cannot take page faults
● User stacks can get page faults
● Stack page fault aware fault handler
● Or use shared kernel stacks

11

Unikernel Optimizations: ret versus iret

● iret is used for interrupts, exceptions and faults
● an expensive instruction compared to ret
● but iret guarantees atomicity to

○ switch the stack
○ ring transition
○ update instruction pointer
○ restore flags

● use ret instead, while ensuring atomicity

12

Unikernel Optimizations: Kernel mode execution

● Kernel can run non-preemptible
● Applications can enter kernel mode of execution
● Allows ‘run-to-completion’

13

Non
performance
critical code

Performance
critical code

Non
performance
critical code

Switch to
kernel model

Switch to
user model

Unikernel Optimizations: Calling kernel routines

● Applications can call any internal kernel functions
● E.g., calling kernel memory allocator instead of user ones
● vmalloc() allocates pinned memory from kernel address range

14

Unikernel Optimizations: Deep shortcuts

● Instead of calling pre-written kernel functions
● Add application specific custom code to the kernel
● Use application knowledge to create custom paths in the kernel

15

Implementation

● Modifications to Linux and glibc
● Currently targets x86_64 architecture
● All code is protected by #ifdefs, so UKL can be configured out
● Prefixing all user symbols with _ukl to avoid name collisions
● Changes to bootstrapping, process creation and initialization paths
● Execution model tracking in transition code
● UKL base model ~550 LoC modified in Linux
● Total UKL patch to Linux is less than 1400 LoC

16

Evaluation: Code, Community and Compatibility

17

● Application support
● Hardware Support
● Ecosystem Support
● Do not support exec, dynamic loader or proprietary pre-compiled binaries

Evaluation: System call latency

18

Evaluation: System call latency with larger payloads

19

Evaluation: Performance

20

