
48 COMMUNICATIONS OF THE ACM | APRIL 2017 | VOL. 60 | NO. 4

contributed articles

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 P
E

T
E

R
 C

R
O

W
T

H
E

R
 A

S
S

O
C

I
A

T
E

S

THE COMPUTER SYSTEMS we use today make it easy
for programmers to mitigate event latencies in the
nanosecond and millisecond time scales (such as
DRAM accesses at tens or hundreds of nanoseconds
and disk I/Os at a few milliseconds) but significantly
lack support for microsecond (µs)-scale events. This
oversight is quickly becoming a serious problem for
programming warehouse-scale computers, where
efficient handling of microsecond-scale events is
becoming paramount for a new breed of low-latency
I/O devices ranging from datacenter networking to
emerging memories (see the first sidebar “Is the
Microsecond Getting Enough Respect?”).

Processor designers have developed multiple
techniques to facilitate a deep memory hierarchy
that works at the nanosecond scale by providing
a simple synchronous programming interface to
the memory system. A load operation will logically

block a thread’s execution, with the
program appearing to resume after the
load completes. A host of complex mi-
croarchitectural techniques make high
performance possible while supporting
this intuitive programming model. Tech-
niques include prefetching, out-of-order
execution, and branch prediction. Since
nanosecond-scale devices are so fast,
low-level interactions are performed pri-
marily by hardware.

At the other end of the latency-mit-
igating spectrum, computer scientists
have worked on a number of tech-
niques—typically software based—to
deal with the millisecond time scale.
Operating system context switching is
a notable example. For instance, when
a read() system call to a disk is made,
the operating system kicks off the low-
level I/O operation but also performs a
software context switch to a different
thread to make use of the processor
during the disk operation. The original
thread resumes execution sometime af-
ter the I/O completes. The long overhead
of making a disk access (milliseconds)
easily outweighs the cost of two context
switches (microseconds). Millisecond-
scale devices are slow enough that the
cost of these software-based mecha-
nisms can be amortized (see Table 1).

These synchronous models for in-
teracting with nanosecond- and milli-
second-scale devices are easier than the
alternative of asynchronous models. In
an asynchronous programming model,
the program sends a request to a device
and continue processing other work

Attack of
the Killer
Microseconds

DOI:10.1145/3015146

Microsecond-scale I/O means tension
between performance and productivity
that will need new latency-mitigating ideas,
including in hardware.

BY LUIZ BARROSO, MIKE MARTY, DAVID PATTERSON, AND
PARTHASARATHY RANGANATHAN

 key insights
 ˽ A new breed of low-latency I/O devices,

ranging from faster datacenter networking
to emerging non-volatile memories and
accelerators, motivates greater interest in
microsecond-scale latencies.

 ˽ Existing system optimizations targeting
nanosecond- and millisecond-scale
events are inadequate for events in the
microsecond range.

 ˽ New techniques are needed to enable
simple programs to achieve high
performance when microsecond-scale
latencies are involved, including new
microarchitecture support.

http://dx.doi.org/10.1145/3015146

APRIL 2017 | VOL. 60 | NO. 4 | COMMUNICATIONS OF THE ACM 49

50 COMMUNICATIONS OF THE ACM | APRIL 2017 | VOL. 60 | NO. 4

contributed articles

the codebase significantly improves
software-development productivity. As
one illustrative example of the overall
benefits of a synchronous programming
model in Google, a rewrite of the Colos-
sus6 client library to use a synchronous
I/O model with lightweight threads
gained a significant improvement in per-
formance while making the code more
compact and easier to understand. More
important, however, was that shifting
the burden of managing asynchronous
events away from the programmer to the
operating system or the thread library
makes the code significantly simpler.
This transfer is very important in ware-
house-scale environments where the co-
debase is touched by thousands of devel-
opers, with significant software releases
multiple times per week.

Recent trends point to a new breed
of low-latency I/O devices that will

work in neither the millisecond nor
the nanosecond time scales. Consider
datacenter networking. The trans-
mission time for a full-size packet at
40Gbps is less than one microsecond
(300ns). At the speed of light, the time
to traverse the length of a typical data-
center (say, 200 meters to 300 meters) is
approximately one microsecond. Fast
datacenter networks are thus likely to
have latencies of the order of microsec-
onds. Likewise, raw flash device latency
is on the order of tens of microseconds.
The latencies of emerging new non-vol-
atile memory technologies (such as the
Intel-Micron Xpoint 3D memory9 and
Moneta3) are expected to be at the lower
end of the microsecond regime as well.
In-memory systems (such as the Stan-
ford RAMCloud14 project) have also es-
timated latencies on the order of mi-
croseconds. Fine-grain GPU offloads
(and other accelerators) have similar
microsecond-scale latencies.

Not only are microsecond-scale hard-
ware devices becoming available, we also
see a growing need to exploit lower laten-
cy storage and communication. One key
reason is the demise of Dennard scaling
and the slowing of Moore’s Law in 2003
that ended the rapid improvement in
microprocessor performance; today’s
processors are approximately 20 times
slower than if they had continued to dou-
ble in performance every 18 months.8 In
response, to enhance online services,
cloud companies have increased the
number of computers they use in a cus-
tomer query. For instance, single-user
search query already turns into thou-
sands of remote procedure calls (RPCs),
a number that will increase in the future.

Techniques optimized for nanosec-
ond or millisecond time scales do not
scale well for this microsecond regime.
Superscalar out-of-order execution,
branch prediction, prefetching, simul-
taneous multithreading, and other
techniques for nanosecond time scales
do not scale well to the microsecond
regime; system designers do not have
enough instruction-level parallelism
or hardware-managed thread contexts
to hide the longer latencies. Likewise,
software techniques to tolerate milli-
second-scale latencies (such as soft-
ware-directed context switching) scale
poorly down to microseconds; the over-
heads in these techniques often equal
or exceed the latency of the I/O device

until the request has finished. To de-
tect when the request has finished, the
program must either periodically poll
the status of the request or use an in-
terrupt mechanism. Our experience
at Google leads us to strongly prefer
a synchronous programming model.
Synchronous code is a lot simpler,
hence easier to write, tune, and debug
(see the second sidebar “Synchronous/
Asynchronous Programming Models”).

The benefits of synchronous pro-
gramming models are further ampli-
fied at scale, when a typical end-to-end
application can span multiple small
closely interacting systems, often written
across several languages—C, C++, Java,
JavaScript, Go, and the like—where the
languages all have their own differing
and ever-changing idioms for asynchro-
nous programming.2,11 Having simple
and consistent APIs and idioms across

100

75

50

25

0
RDMA Two-sided Interrupts RPC TCPThread

dispatch

Figure 1. Cumulative software overheads, all in the range of microseconds can degrade
performance a few orders of magnitude.

Table 1. Events and their latencies showing emergence of a new breed of microsecond
events.

nanosecond events microsecond events millisecond events

register file: 1ns–5ns datacenter networking: O(1µs) disk: O(10ms)

cache accesses: 4ns–30ns new NVM memories: O(1µs) low-end flash: O(1ms)

memory access: 100ns high-end flash: O(10µs) wide-area networking: O(10ms)

GPU/accelerator: O(10µs)

Table 2. Service times measuring number of instructions between I/O events for a
production-quality-tuned web search workload. The flash and DRAM data are measured
for real production use; the bolded data for new memory/storage tiers is based on
detailed trace analysis.

Task: data-intensive workload Service time (task length between I/Os)

Flash 225K instructions = O(100µs)

Fast flash ~20K instructions = O(10µs)

New NVM memory ~2K instructions = O(1µs)

DRAM 500 instructions = O(100ns–1µs)

L
at

en
cy

 (
u

s)

Cumulative Overheads

APRIL 2017 | VOL. 60 | NO. 4 | COMMUNICATIONS OF THE ACM 51

contributed articles

and core hops) all add overheads, again
in the microsecond range. We have also
measured standard Google debugging
features degrading latency by up to
tens of microseconds. Finally, queue-
ing overheads—in the host, applica-
tion, and network fabric—can all incur
additional latencies, often on the order
of tens to hundreds of microseconds.
Some of these sources of overhead have
a more severe effect on tail latency than
on median latency, which can be espe-
cially problematic in distributed com-
putations.4

Similar observations can be made
about overheads for new non-volatile stor-
age. For example, the Moneta project3 at
the University of California, San Diego,

discusses how the latency of access for
a non-volatile memory with baseline
raw access latency of a few microsec-
onds can increase by almost a factor of
five due to different overheads across
the kernel, interrupt handling, and data
copying.

System designers need to rethink

itself. As we will see, it is quite easy to
take fast hardware and throw away its
performance with software designed
for millisecond-scale devices.

How to Waste a Fast
Datacenter Network
To better understand how optimiza-
tions can target the microsecond re-
gime, consider a high-performance
network. Figure 1 is an illustrative ex-
ample of how a 2µs fabric can, through
a cumulative set of software overheads,
turn into a nearly 100µs datacenter
fabric. Each measurement reflects the
median round-trip latency (from the
application), with no queueing delays
or unloaded latencies.

A very basic remote direct memory
access (RDMA) operation in a fast data-
center network takes approximately 2µs.
An RDMA operation offloads the mecha-
nisms of operation handling and trans-
port reliability to a specialized hardware
device. Making it a “two-sided” primitive
(involving remote software rather than

just remote hardware) adds several more
microseconds. Dispatching overhead
from a network thread to an operation
thread (on a different processor) further
increases latency due to processor-wake-
up and kernel-scheduler activity. Using
interrupt-based notification rather than
spin polling adds many more microsec-
onds. Adding a feature-filled RPC stack
incurs significant software overhead in
excess of tens of microseconds. Finally,
using a full-fledged TCP/IP stack rather
than the RDMA-based transport adds to
the final overhead that exceeds 75µs in
this particular experiment.

In addition, there are other more
unpredictable, and more non-intuitive,
sources of overhead. For example, when
an RPC reaches a server where the core
is in a sleep state, additional latencies—
often tens to hundreds of microsec-
onds—might be incurred to come out
of that sleep state (and potentially warm
up processor caches). Likewise, various
mechanisms (such as interprocessor in-
terrupts, data copies, context switches,

A simple comparison, as in the figure here, of the occurrence of the terms “millisecond,” “microsecond,” and
“nanosecond” in Google’s n-gram viewer (a tool that charts frequencies of words in a large corpus of books printed from
1800 to 2012, https://books.google.com/ngrams) points to the lack of adequate attention to the microsecond-level time
scale. Microprocessors moved out of the microsecond scale toward nanoseconds, while networking and storage latencies
have remained in the milliseconds. With the rise of a new breed of I/O devices in the datacenter, it is time for system
designers to refocus on how to achieve high performance and ease of programming at the microsecond-scale.

Is the Microsecond
Getting Enough Respect?

n-gram viewer of ms, µs, and ns.

0.0000500%

0.0000450%

0.0000400%

0.0000350%

0.0000300%

0.0000250%

0.0000200%

0.0000150%

0.0000100%

0.0000050%

0.0000000%

1920 1930 1940 1950 1960 1970 1980 1990 2000

microsecond
(All)

nanosecond
(All)

millisecond
(All)

52 COMMUNICATIONS OF THE ACM | APRIL 2017 | VOL. 60 | NO. 4

contributed articles

of requests (requests per second), a
simple queuing theory model tells
us that as service time increases
throughput decreases. In the micro-
second regime, when service time is
composed mostly of “overhead” rath-
er than useful computation, through-
put declines precipitously.

Illustrating the effect, Figure 2
shows efficiency (fraction of achieved
vs. ideal throughput) on the y-axis,
and service time on the x-axis. The dif-
ferent curves show the effect of chang-
ing “microsecond overhead” values;
that is, amounts of time spent on each
overhead event, with the line marked
“No overhead” representing a hypo-
thetical ideal system with zero over-
head. The model assumes a simple
closed queuing model with determin-

istic arrivals and service times, where
service times represent the time be-
tween overhead events.

As expected, for short service times,
overhead of just a single microsecond
leads to dramatic reduction in over-
all throughput efficiency. How likely
are such small service times in the real
world? Table 2 lists the service times
for a production web-search workload
measuring the number of instructions
between I/O events when the workload
is tuned appropriately. As we move to
systems that use fast flash or new non-
volatile memories, service times in the
range of 0.5µs to 10µs are to be expected.
Microsecond overheads can significantly
degrade performance in this regime.

At longer service times, sub-micro-
second overheads are tolerable and
throughput is close to the ideal. Higher
overheads in the tens of microseconds,
possibly from the software overheads
detailed earlier, can lead to degraded
performance, so system designers still
need to optimize for killer microsec-
onds.

Other overheads go beyond the basic
mechanics of accessing microsecond-
scale devices. A 2015 paper summariz-
ing a multiyear longitudinal study at
Google10 showed that 20%–25% of fleet-
wide processor cycles are spent on low-
level overheads we call the “datacenter
tax.” Examples include serialization and
deserialization of data, memory alloca-
tion and de-allocation, network stack
costs, compression, and encryption.
The datacenter tax adds to the killer mi-
crosecond challenge. A logical question
is whether system designers can address
reduced processor efficiency by offload-
ing some of the overheads to a separate
core or accelerator. Unfortunately, at
single-digit microsecond I/O latencies,
I/O operations tend to be closely coupled
with the main work on the processor.

It is this frequent and closely cou-
pled nature of these processor over-
heads that is even more significant, as
in “death by 1,000 cuts.” For example,
if microsecond-scale operations are
made infrequently, then conservation
of processor performance may not be
a concern. Application threads could
just busy-poll to wait for the microsec-
ond operation to complete. Alterna-
tively, if these operations are not cou-
pled closely to the main computation
on the processor, traditional offload

the hardware and software stack in the
context of the microsecond challenge.
System design decisions like operat-
ing system-managed threading and
interrupt-based notification that were
in the noise with millisecond-scale de-
signs now have to be redesigned more
carefully, and system optimizations
(such as storage I/O schedulers tar-
geted explicitly at millisecond scales)
have to be rethought for the microsec-
ond scale.

How to Waste a Fast
Datacenter Processor
The other significant negative ef-
fect of microsecond-scale events is
on processor efficiency. If we mea-
sure processor resource efficiency
in terms of throughput for a stream

Table 3. High-performance computing and warehouse-scale computing systems
compared. Though high-performance computing systems are often optimized for
low-latency networking, their designs and techniques are not directly applicable to
warehouse-scale computers.

High-Performance Computing Warehouse-Scale Computing

Workloads Supercomputing workloads that
often model the physical world;
simpler, static data structures.

Large-scale online data-intensive
workloads; operate on big data and
complex dynamic data structures;
response latency critical.

Programming
environment

Code touched by a fewer programmers;
slower-changing workloads.

Hardware concurrency visible to
programmers at compile time.

Codebase touched by thousands of
developers; significant software releases
100 times per year.

Automatic scale-out of queries per second.

System
constraints

Focus on highest performance; recent
emphasis on performance per Watt.

Stranding of resources (such as
underutilized processors) acceptable.

Focus on highest performance per dollar.

Significant effort to avoid stranding of resources
(such as processor, memory, and power).

Reliability/
security

Reliability in hardware; often no-long-
lived mutable data; no encryption.

Commodity hardware; reliability across
the stack.
Encryption/authentication requirements.

Figure 2. Efficiency degrades significantly at low service times due to microsecond-scale
overheads.

100%

75%

50%

25%

0%
0

Service time (us)

E
ffi

ci
en

cy

302010 40

 No overhead 1µs 16µs

APRIL 2017 | VOL. 60 | NO. 4 | COMMUNICATIONS OF THE ACM 53

contributed articles

latency networking. Nevertheless, the
techniques used in supercomputers are
not directly applicable to warehouse-
scale computers (see Table 3). For
one, high-performance systems have
slower-changing workloads, and fewer
programmers need to touch the code.
Code simplicity and greatest program-
mer productivity are thus not as critical
as they are in deployments like Amazon
or Google where key software products
are released multiple times per week.
High-performance workloads also
tend to have simpler and static data
structures that lend themselves to
simpler, faster networking. Second, the
emphasis is primarily on performance

engines can be used. However, given
fine-grain and closely coupled over-
heads, new hardware optimizations
are needed at the processor micro-
architectural level to rethink the im-
plementation and scheduling of such
core functions that comprise future
microsecond-scale I/O events.

Solution Directions
This evidence indicates several ma-
jor classes of opportunities ahead in
the upcoming “era of the killer micro-
second.” First, and more near-term,
it is relatively easy to squander all the
benefits from microsecond devices by
progressively adding suboptimal sup-

porting software not tuned for such
small latencies. Computer scientists
thus need to design “microsecond-
aware” systems stacks. They also need
to build on related work from the past
five years in this area (such as Caulfied
et al.,3 Nanavati et al.,12 and Ouster-
hout et al.14) to continue redesigning
traditional low-level system optimiza-
tions—reduced lock contention and
synchronization, lower-overhead inter-
rupt handling, efficient resource utili-
zation during spin-polling, improved
job scheduling, and hardware offload-
ing but for the microsecond regime.

The high-performance comput-
ing industry has long dealt with low-

Synchronous APIs maintain the model of sequential
execution, and a thread’s state can be stored on the stack
without explicit management from the application. This
leads to code that is shorter, easier-to-understand, more
maintainable, and potentially even more efficient. In contrast,
with an asynchronous model, whenever an operation is
triggered, the code must typically be split up and moved into
different functions. The control flow becomes obfuscated,
and it becomes the application’s responsibility to manage
the state between asynchronous event-handling functions
that run to completion.

Consider a simple example where a function returns
the number of words that appears in a given document
identifier where the implementation may store the cached
documents on a microsecond-scale device. The example
represented in the first code portion makes two synchronous
accesses to microsecond-scale devices: the first retrieves an
index location for the document, and the second uses that
location to retrieve the actual document content for counting
words. With a synchronous programming model, it is not only
straightforward but the model also can completely abstract
away device accesses altogether by providing a natural,
synchronous CountWords function with familiar syntax.

// Returns the number of words found in the document specified by ‘doc_id’.
int CountWords(const string& doc_id) {
 Index index;
 bool status = ReadDocumentIndex(doc_id, &index);
 if (!status) return -1;
 string doc;
 status = ReadDocument(index.location, &doc);
 if (!status) return -1;
 return CountWordsInString(doc);
}

The C++11 example in the second code portion shows an
asynchronous model where a “callback” (commonly known as
a “continuation”) is used. When the asynchronous operation
completes, the event-handling loop invokes the callback
to continue the computation. Since two asynchronous
operations are made, two callbacks are needed. Moreover
the CountWords API now must be asynchronous itself. And
unlike the synchronous example, state between asynchronous
operations must be explicitly managed and tracked on the
heap rather than on a thread’s stack.

// Heap-allocated state tracked between asynchronous operations.
struct AsyncCountWordsState {
 bool status;
 std::function<void(int)> done_callback;
 Index index;
 string doc;
};

// Invokes the ‘done’ callback, passing the number of words found in the
// document specified by ‘doc_id’.
void AsyncCountWords(const string& doc_id, std::function<void(int)> done) {
 // Kick off the first asynchronous operation, and invoke the
 // ReadDocumentIndexDone when it finishes. State between asynchronous
 // operations is tracked in a heap-allocated ‘state’ object.
 auto state = new AsyncCountWordsState();
 state->done_callback = done;
 AsyncReadDocumentIndex(doc_id, &state->status, &state->index,
 std::bind(&ReadDocumentIndexDone, state));
}

// First callback function.
void ReadDocumentIndexDone(AsyncCountWordsState* state) {
 if (!state->status) {
 state->done_callback(-1);
 delete state;
 } else {
 // Kick off the second asynchronous operation, and invoke the
 // ReadDocumentDone function when it finishes. The 'state' object
 // is passed to the second callback for final cleanup.
 AsyncReadDocument(state->index.location, &state->status,
 &state->doc, std::bind(&ReadDocumentDone, state));
 }
}

// Second callback function.
void ReadDocumentDone(AsyncCountWordsState* state) {
 if (!state->status) {
 state->done_callback(-1);
 } else {
 state->done_callback(CountWordsInString(state->doc));
 }
 delete state;
}

Callbacks make the flow of control explicit rather than just in-
voking a function and waiting for it to complete. While languages and
libraries can make it somewhat easier to use callbacks and continua-
tions (such as support for async/await, lambdas, tasks, and futures),
the result remains code that is arguably messier and more difficult to
understand than a simple synchronous function-calling model.

In this asynchronous example, wrapping the code inside
a synchronous CountWords() function—in order to abstract
away the presence of an underlying asynchronous microsecond-
scale device—requires support for a wait primitive. The existing
approaches for waiting on a condition invoke operating system
support for thread scheduling, thereby incurring significant
overhead when wait times are at the microsecond scale.

Synchronous/Asynchronous
Programming Models

54 COMMUNICATIONS OF THE ACM | APRIL 2017 | VOL. 60 | NO. 4

contributed articles

for detailed comments that improved
this article. We also thank the teams at
Google that build, manage, and main-
tain the systems that contributed to the
insights we have explored here.

References
1. Alverson, R. et al. The Tera computer system. In

Proceedings of the Fourth International Conference on
Supercomputing (Amsterdam, The Netherlands, June
11–15). ACM Press, New York, 1990, 1–6.

2. Boost C++ Libraries. Boost asio library; http://www.
boost.org/doc/libs/1_59_0/doc/html/boost_asio.html

3. Caulfield, A. et al. Moneta: A high-performance storage
array architecture for next-generation, non-volatile
memories. In Proceedings of the 2010 IEEE/ACM
International Symposium on Microarchitecture (Atlanta,
GA, Dec. 4–8). IEEE Computer Society Press, 2010.

4. Dean, J. and Barroso, L.A. The tail at scale. Commun.
ACM 56, 2 (Feb. 2013), 74–80.

5. Erlang. Erlang User’s Guide Version 8.0. Processes;
http://erlang.org/doc/efficiency_guide/processes.html

6. Fikes, F. Storage architecture and challenges. In
Proceedings of the 2010 Google Faculty Summit
(Mountain View, CA, July 29, 2010); http://www.
systutorials.com/3306/storage-architecture-and-
challenges/

7. Golang.org. Effective Go. Goroutines; https://golang.
org/doc/effective_go.html#goroutines

8. Hennessy, J. and Patterson, D. Computer Architecture:
A Quantitative Approach, Sixth Edition. Elsevier,
Cambridge, MA, 2017.

9. Intel Newsroom. Intel and Micron produce
breakthrough memory technology, July 28,
2015; http://newsroom.intel.com/community/
intel_newsroom/blog/2015/07/28/intel-and-micron-
produce-breakthrough-memory-technology

10. Kanev, S. et al. Profiling a warehouse-scale computer.
In Proceedings of the 42nd International Symposium
on Computer Architecture (Portland, OR, June 13–17).
ACM Press, New York, 2015.

11. Microsoft. Asynchronous Programming with Async and
Await (C# and Visual Basic); https://msdn.microsoft.
com/en-us/library/hh191443.aspx

12. Nanavati, M. et al. Non-volatile storage: Implications
of the datacenter’s shifting center. Commun. ACM 50, 1
(Jan. 2016), 58–63.

13. Nelson, J. et al. Latency-tolerant software distributed
shared memory. In Proceedings of the USENIX
Annual Technical Conference (Santa Clara, CA, July
8–10). Usenix Association, Berkeley, CA, 2015.

14. Ousterhout, J. et al. The RAMCloud storage system.
ACM Transactions on Computer Systems 33, 3 (Sept.
2015), 7:1–7:55.

15. Smith, B. A pipelined shared-resource MIMD
computer. Chapter in Advanced Computer
Architecture. D.P. Agrawal, Ed. IEEE Computer
Society Press, Los Alamitos, CA, 1986, 39–41.

16. Wikipedia.org. Google n-gram viewer; https://
en.wikipedia.org/wiki/Google_Ngram_Viewer

Luiz André Barroso (luiz@google.com) is a Google
Fellow and Vice President of Engineering at Google Inc.,
Mountain View, CA.

Michael R. Marty (mikemarty@google.com) is a senior
staff software engineer and manager at Google Inc.,
Madison, WI.

David Patterson (davidpatterson@gmail.com) is an
emeritus professor at the University of California,
Berkeley, and a distinguished engineer at Google Inc.,
Mountain View, CA.

Parthasarathy Ranganathan (partha.ranganathan@
google.com) is a principal engineer at Google Inc.,
Mountain View, CA.

Copyright held by the authors.

(vs. performance-per-total-cost-of-
ownership in large-scale Web deploy-
ments). Consequently, they can keep
processors highly underutilized when,
say, blocking for MPI-style rendezvous
messages. In contrast, a key emphasis
in warehouse-scale computing systems
is the need to optimize for low latencies
while achieving greater utilizations.

As discussed, traditional processor
optimizations to hide latency run out
of instruction-level pipeline parallel-
ism to tolerate microsecond latencies.
System designers need new hardware
optimizations to extend the use of syn-
chronous blocking mechanisms and
thread-level parallelism to the micro-
second range.

Context switching can help, al-
beit at the cost of increased power
and latency. Prior approaches for
fast context switching (such as Denelcor
HEP15 and Tera MTA computers1) traded
off single-threaded performance, giving
up on latency advantages from local-
ity and private high-level caches and,
consequently, have limited appeal in
a broader warehouse-scale computing
environment where programmers want
to tolerate microsecond events with low
overhead and ease of programmability.
Some languages and runtimes (such as
Go and Erlang) feature lightweight
threads5,7 to reduce memory and context-
switch overheads associated with oper-
ating system threads. But these systems
fall back to heavier-weight mechanisms
when dealing with I/O. For example, the
Grappa platform13 builds an efficient
task scheduler and communication
layer for small messages but trades off a
more restricted programming environ-
ment and less-efficient performance
and also optimizes for throughput. New
hardware ideas are needed to enable con-
text switching across a large number of
threads (tens to hundreds per processor,
though finding the sweet spot is an open
question) at extremely fast latencies
(tens of nanoseconds).

Hardware innovation is also needed
to help orchestrate communication with
pending I/O, efficient queue manage-
ment and task scheduling/dispatch, and
better processor state (such as cache)
management across several contexts.
Ideally, future schedulers will have rich
support for I/O (such as being able to
park a thread based on the readiness of
multiple I/O operations). For instance,

facilities similar to the x86 monitor/
mwait instructionsa could allow a thread
to yield until an I/O operation completes
with very low overhead. Meanwhile, the
hardware could seamlessly schedule a
different thread. To reduce overhead fur-
ther, a potential hardware implementa-
tion could cache the thread’s context in
either the existing L1/L2/L3 hierarchy
or a special-purpose context cache. Im-
proved resource isolation and quality-
of-service control in hardware will also
help. Hardware support to build new
instrumentation to track microsecond
overheads will also be useful.

Finally, techniques to enable micro-
second-scale devices should not neces-
sarily seek to keep processor pipelines
busy. One promising solution might
instead be to enable a processor to stop
consuming power while a microsecond-
scale access is outstanding and shift
that power to other cores not blocked
on accesses.

Conclusion
System designers can no longer ig-
nore efficient support for microsec-
ond-scale I/O, as the most useful new
warehouse-scale computing technolo-
gies start running at that time scale.
Today’s hardware and system software
make an inadequate platform, par-
ticularly given support for synchro-
nous programming models is deemed
critical for software productivity. Novel
microsecond-optimized system stacks
are needed, reexamining questions
around appropriate layering and ab-
straction, control and data plane sepa-
ration, and hardware/software bound-
aries. Such optimized designs at the
microsecond scale, and corresponding
faster I/O, can in turn enable a virtuous
cycle of new applications and program-
ming models that leverage low-latency
communication, dramatically increas-
ing the effective computing capabili-
ties of warehouse-scale computers.

Acknowledgments
We would like to thank Al Borchers,
Robert Cypher, Lawrence Greenfield,
Mark Hill, Urs Hölzle, Christos Ko-
zyrakis, Noah Levine, Milo Martin, Jeff
Mogul, John Ousterhout, Amin Vah-
dat, Sean Quinlan, and Tom Wenisch

a The x86 monitor/mwait instructions allow privi-
leged software to wait on a single memory word.

Watch the authors discuss
their work in this exclusive
Communications video.
http://cacm.acm.org/videos/the-
attack-of-the-killer-microseconds

http://www.boost.org/doc/libs/1_59_0/doc/html/boost_asio.html
http://www.boost.org/doc/libs/1_59_0/doc/html/boost_asio.html
http://erlang.org/doc/efficiency_guide/processes.html
http://www.systutorials.com/3306/storage-architecture-and-challenges/
http://www.systutorials.com/3306/storage-architecture-and-challenges/
http://www.systutorials.com/3306/storage-architecture-and-challenges/
https://golang.org/doc/effective_go.html#goroutines
https://golang.org/doc/effective_go.html#goroutines
http://newsroom.intel.com/community/intel_newsroom/blog/2015/07/28/intel-and-micron-produce-breakthrough-memory-technology
http://newsroom.intel.com/community/intel_newsroom/blog/2015/07/28/intel-and-micron-produce-breakthrough-memory-technology
http://newsroom.intel.com/community/intel_newsroom/blog/2015/07/28/intel-and-micron-produce-breakthrough-memory-technology
https://msdn.microsoft.com/en-us/library/hh191443.aspx
https://msdn.microsoft.com/en-us/library/hh191443.aspx
https://en.wikipedia.org/wiki/Google_Ngram_Viewer
https://en.wikipedia.org/wiki/Google_Ngram_Viewer

