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THE COMPUTER SYSTEMS we use today make it easy 
for programmers to mitigate event latencies in the 
nanosecond and millisecond time scales (such as 
DRAM accesses at tens or hundreds of nanoseconds 
and disk I/Os at a few milliseconds) but significantly 
lack support for microsecond (µs)-scale events. This 
oversight is quickly becoming a serious problem for 
programming warehouse-scale computers, where 
efficient handling of microsecond-scale events is 
becoming paramount for a new breed of low-latency 
I/O devices ranging from datacenter networking to 
emerging memories (see the first sidebar “Is the 
Microsecond Getting Enough Respect?”). 

Processor designers have developed multiple 
techniques to facilitate a deep memory hierarchy  
that works at the nanosecond scale by providing  
a simple synchronous programming interface to  
the memory system. A load operation will logically 

block a thread’s execution, with the 
program appearing to resume after the 
load completes. A host of complex mi-
croarchitectural techniques make high 
performance possible while supporting 
this intuitive programming model. Tech-
niques include prefetching, out-of-order 
execution, and branch prediction. Since 
nanosecond-scale devices are so fast, 
low-level interactions are performed pri-
marily by hardware. 

At the other end of the latency-mit-
igating spectrum, computer scientists 
have worked on a number of tech-
niques—typically software based—to 
deal with the millisecond time scale. 
Operating system context switching is 
a notable example. For instance, when 
a read() system call to a disk is made, 
the operating system kicks off the low-
level I/O operation but also performs a 
software context switch to a different 
thread to make use of the processor 
during the disk operation. The original 
thread resumes execution sometime af-
ter the I/O completes. The long overhead 
of making a disk access (milliseconds) 
easily outweighs the cost of two context 
switches (microseconds). Millisecond-
scale devices are slow enough that the 
cost of these software-based mecha-
nisms can be amortized (see Table 1). 

These synchronous models for in-
teracting with nanosecond- and milli-
second-scale devices are easier than the 
alternative of asynchronous models. In 
an asynchronous programming model, 
the program sends a request to a device 
and continue processing other work 
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the codebase significantly improves 
software-development productivity. As 
one illustrative example of the overall 
benefits of a synchronous programming 
model in Google, a rewrite of the Colos-
sus6 client library to use a synchronous 
I/O model with lightweight threads 
gained a significant improvement in per-
formance while making the code more 
compact and easier to understand. More 
important, however, was that shifting 
the burden of managing asynchronous 
events away from the programmer to the 
operating system or the thread library 
makes the code significantly simpler. 
This transfer is very important in ware-
house-scale environments where the co-
debase is touched by thousands of devel-
opers, with significant software releases 
multiple times per week. 

Recent trends point to a new breed 
of low-latency I/O devices that will 

work in neither the millisecond nor 
the nanosecond time scales. Consider 
datacenter networking. The trans-
mission time for a full-size packet at 
40Gbps is less than one microsecond 
(300ns). At the speed of light, the time 
to traverse the length of a typical data-
center (say, 200 meters to 300 meters) is 
approximately one microsecond. Fast 
datacenter networks are thus likely to 
have latencies of the order of microsec-
onds. Likewise, raw flash device latency 
is on the order of tens of microseconds. 
The latencies of emerging new non-vol-
atile memory technologies (such as the 
Intel-Micron Xpoint 3D memory9 and 
Moneta3) are expected to be at the lower 
end of the microsecond regime as well. 
In-memory systems (such as the Stan-
ford RAMCloud14 project) have also es-
timated latencies on the order of mi-
croseconds. Fine-grain GPU offloads 
(and other accelerators) have similar 
microsecond-scale latencies. 

Not only are microsecond-scale hard-
ware devices becoming available, we also 
see a growing need to exploit lower laten-
cy storage and communication. One key 
reason is the demise of Dennard scaling 
and the slowing of Moore’s Law in 2003 
that ended the rapid improvement in 
microprocessor performance; today’s 
processors are approximately 20 times 
slower than if they had continued to dou-
ble in performance every 18 months.8 In 
response, to enhance online services, 
cloud companies have increased the 
number of computers they use in a cus-
tomer query. For instance, single-user 
search query already turns into thou-
sands of remote procedure calls (RPCs), 
a number that will increase in the future. 

Techniques optimized for nanosec-
ond or millisecond time scales do not 
scale well for this microsecond regime. 
Superscalar out-of-order execution, 
branch prediction, prefetching, simul-
taneous multithreading, and other 
techniques for nanosecond time scales 
do not scale well to the microsecond 
regime; system designers do not have 
enough instruction-level parallelism 
or hardware-managed thread contexts 
to hide the longer latencies. Likewise, 
software techniques to tolerate milli-
second-scale latencies (such as soft-
ware-directed context switching) scale 
poorly down to microseconds; the over-
heads in these techniques often equal 
or exceed the latency of the I/O device 

until the request has finished. To de-
tect when the request has finished, the 
program must either periodically poll 
the status of the request or use an in-
terrupt mechanism. Our experience 
at Google leads us to strongly prefer 
a synchronous programming model. 
Synchronous code is a lot simpler, 
hence easier to write, tune, and debug 
(see the second sidebar “Synchronous/
Asynchronous Programming Models”). 

The benefits of synchronous pro-
gramming models are further ampli-
fied at scale, when a typical end-to-end 
application can span multiple small 
closely interacting systems, often written 
across several languages—C, C++, Java, 
JavaScript, Go, and the like—where the 
languages all have their own differing 
and ever-changing idioms for asynchro-
nous programming.2,11 Having simple 
and consistent APIs and idioms across 
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Figure 1. Cumulative software overheads, all in the range of microseconds can degrade 
performance a few orders of magnitude.

Table 1. Events and their latencies showing emergence of a new breed of microsecond 
events. 

nanosecond events microsecond events millisecond events

register file: 1ns–5ns datacenter networking: O(1µs) disk: O(10ms)

cache accesses: 4ns–30ns new NVM memories: O(1µs) low-end flash: O(1ms)

memory access: 100ns high-end flash: O(10µs) wide-area networking: O(10ms)

GPU/accelerator: O(10µs)

Table 2. Service times measuring number of instructions between I/O events for a  
production-quality-tuned web search workload. The flash and DRAM data are measured 
for real production use; the bolded data for new memory/storage tiers is based on  
detailed trace analysis. 

Task: data-intensive workload Service time (task length between I/Os)

Flash 225K instructions = O(100µs)

Fast flash ~20K instructions = O(10µs)

New NVM memory ~2K instructions = O(1µs)

DRAM 500 instructions = O(100ns–1µs)
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and core hops) all add overheads, again 
in the microsecond range. We have also 
measured standard Google debugging 
features degrading latency by up to 
tens of microseconds. Finally, queue-
ing overheads—in the host, applica-
tion, and network fabric—can all incur 
additional latencies, often on the order 
of tens to hundreds of microseconds. 
Some of these sources of overhead have 
a more severe effect on tail latency than 
on median latency, which can be espe-
cially problematic in distributed com-
putations.4 

Similar observations can be made 
about overheads for new non-volatile stor-
age. For example, the Moneta project3 at 
the University of California, San Diego, 

discusses how the latency of access for 
a non-volatile memory with baseline 
raw access latency of a few microsec-
onds can increase by almost a factor of 
five due to different overheads across 
the kernel, interrupt handling, and data 
copying. 

System designers need to rethink 

itself. As we will see, it is quite easy to 
take fast hardware and throw away its 
performance with software designed 
for millisecond-scale devices. 

How to Waste a Fast 
Datacenter Network 
To better understand how optimiza-
tions can target the microsecond re-
gime, consider a high-performance 
network. Figure 1 is an illustrative ex-
ample of how a 2µs fabric can, through 
a cumulative set of software overheads, 
turn into a nearly 100µs datacenter 
fabric. Each measurement reflects the 
median round-trip latency (from the 
application), with no queueing delays 
or unloaded latencies. 

A very basic remote direct memory 
access (RDMA) operation in a fast data-
center network takes approximately 2µs. 
An RDMA operation offloads the mecha-
nisms of operation handling and trans-
port reliability to a specialized hardware 
device. Making it a “two-sided” primitive 
(involving remote software rather than 

just remote hardware) adds several more 
microseconds. Dispatching overhead 
from a network thread to an operation 
thread (on a different processor) further 
increases latency due to processor-wake-
up and kernel-scheduler activity. Using 
interrupt-based notification rather than 
spin polling adds many more microsec-
onds. Adding a feature-filled RPC stack 
incurs significant software overhead in 
excess of tens of microseconds. Finally, 
using a full-fledged TCP/IP stack rather 
than the RDMA-based transport adds to 
the final overhead that exceeds 75µs in 
this particular experiment. 

In addition, there are other more 
unpredictable, and more non-intuitive, 
sources of overhead. For example, when 
an RPC reaches a server where the core 
is in a sleep state, additional latencies—
often tens to hundreds of microsec-
onds—might be incurred to come out 
of that sleep state (and potentially warm 
up processor caches). Likewise, various 
mechanisms (such as interprocessor in-
terrupts, data copies, context switches, 

A simple comparison, as in the figure here, of the occurrence of the terms “millisecond,” “microsecond,” and 
“nanosecond” in Google’s n-gram viewer (a tool that charts frequencies of words in a large corpus of books printed from 
1800 to 2012, https://books.google.com/ngrams) points to the lack of adequate attention to the microsecond-level time 
scale. Microprocessors moved out of the microsecond scale toward nanoseconds, while networking and storage latencies 
have remained in the milliseconds. With the rise of a new breed of I/O devices in the datacenter, it is time for system 
designers to refocus on how to achieve high performance and ease of programming at the microsecond-scale. 

Is the Microsecond  
Getting Enough Respect? 

n-gram viewer of ms, µs, and ns. 
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of requests (requests per second), a 
simple queuing theory model tells 
us that as service time increases 
throughput decreases. In the micro-
second regime, when service time is 
composed mostly of “overhead” rath-
er than useful computation, through-
put declines precipitously. 

Illustrating the effect, Figure 2 
shows efficiency (fraction of achieved 
vs. ideal throughput) on the y-axis, 
and service time on the x-axis. The dif-
ferent curves show the effect of chang-
ing “microsecond overhead” values; 
that is, amounts of time spent on each 
overhead event, with the line marked 
“No overhead” representing a hypo-
thetical ideal system with zero over-
head. The model assumes a simple 
closed queuing model with determin-

istic arrivals and service times, where 
service times represent the time be-
tween overhead events. 

As expected, for short service times, 
overhead of just a single microsecond 
leads to dramatic reduction in over-
all throughput efficiency. How likely 
are such small service times in the real 
world? Table 2 lists the service times 
for a production web-search workload 
measuring the number of instructions 
between I/O events when the workload 
is tuned appropriately. As we move to 
systems that use fast flash or new non-
volatile memories, service times in the 
range of 0.5µs to 10µs are to be expected. 
Microsecond overheads can significantly 
degrade performance in this regime. 

At longer service times, sub-micro-
second overheads are tolerable and 
throughput is close to the ideal. Higher 
overheads in the tens of microseconds, 
possibly from the software overheads 
detailed earlier, can lead to degraded 
performance, so system designers still 
need to optimize for killer microsec-
onds. 

Other overheads go beyond the basic 
mechanics of accessing microsecond-
scale devices. A 2015 paper summariz-
ing a multiyear longitudinal study at 
Google10 showed that 20%–25% of fleet-
wide processor cycles are spent on low-
level overheads we call the “datacenter 
tax.” Examples include serialization and 
deserialization of data, memory alloca-
tion and de-allocation, network stack 
costs, compression, and encryption. 
The datacenter tax adds to the killer mi-
crosecond challenge. A logical question 
is whether system designers can address 
reduced processor efficiency by offload-
ing some of the overheads to a separate 
core or accelerator. Unfortunately, at 
single-digit microsecond I/O latencies, 
I/O operations tend to be closely coupled 
with the main work on the processor. 

It is this frequent and closely cou-
pled nature of these processor over-
heads that is even more significant, as 
in “death by 1,000 cuts.” For example, 
if microsecond-scale operations are 
made infrequently, then conservation 
of processor performance may not be 
a concern. Application threads could 
just busy-poll to wait for the microsec-
ond operation to complete. Alterna-
tively, if these operations are not cou-
pled closely to the main computation 
on the processor, traditional offload 

the hardware and software stack in the 
context of the microsecond challenge. 
System design decisions like operat-
ing system-managed threading and 
interrupt-based notification that were 
in the noise with millisecond-scale de-
signs now have to be redesigned more 
carefully, and system optimizations 
(such as storage I/O schedulers tar-
geted explicitly at millisecond scales) 
have to be rethought for the microsec-
ond scale. 

How to Waste a Fast 
Datacenter Processor 
The other significant negative ef-
fect of microsecond-scale events is 
on processor efficiency. If we mea-
sure processor resource efficiency 
in terms of throughput for a stream 

Table 3. High-performance computing and warehouse-scale computing systems 
compared. Though high-performance computing systems are often optimized for  
low-latency networking, their designs and techniques are not directly applicable to 
warehouse-scale computers. 

High-Performance Computing Warehouse-Scale Computing

Workloads Supercomputing workloads that  
often model the physical world;  
simpler, static data structures. 

Large-scale online data-intensive 
workloads; operate on big data and  
complex dynamic data structures;  
response latency critical. 

Programming 
environment

Code touched by a fewer programmers; 
slower-changing workloads. 

Hardware concurrency visible to 
programmers at compile time. 

Codebase touched by thousands of 
developers; significant software releases 
100 times per year. 

Automatic scale-out of queries per second.

System 
constraints

Focus on highest performance; recent 
emphasis on performance per Watt. 

Stranding of resources (such as 
underutilized processors) acceptable. 

Focus on highest performance per dollar. 

Significant effort to avoid stranding of resources 
(such as processor, memory, and power). 

Reliability/
security

Reliability in hardware; often no-long-
lived mutable data; no encryption.

Commodity hardware; reliability across  
the stack. 
Encryption/authentication requirements. 

Figure 2. Efficiency degrades significantly at low service times due to microsecond-scale 
overheads. 
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latency networking. Nevertheless, the 
techniques used in supercomputers are 
not directly applicable to warehouse-
scale computers (see Table 3). For 
one, high-performance systems have 
slower-changing workloads, and fewer 
programmers need to touch the code. 
Code simplicity and greatest program-
mer productivity are thus not as critical 
as they are in deployments like Amazon 
or Google where key software products 
are released multiple times per week. 
High-performance workloads also 
tend to have simpler and static data 
structures that lend themselves to 
simpler, faster networking. Second, the 
emphasis is primarily on performance 

engines can be used. However, given 
fine-grain and closely coupled over-
heads, new hardware optimizations 
are needed at the processor micro-
architectural level to rethink the im-
plementation and scheduling of such 
core functions that comprise future 
microsecond-scale I/O events. 

Solution Directions 
This evidence indicates several ma-
jor classes of opportunities ahead in 
the upcoming “era of the killer micro-
second.” First, and more near-term, 
it is relatively easy to squander all the 
benefits from microsecond devices by 
progressively adding suboptimal sup-

porting software not tuned for such 
small latencies. Computer scientists 
thus need to design “microsecond-
aware” systems stacks. They also need 
to build on related work from the past 
five years in this area (such as Caulfied 
et al.,3 Nanavati et al.,12 and Ouster-
hout et al.14) to continue redesigning 
traditional low-level system optimiza-
tions—reduced lock contention and 
synchronization, lower-overhead inter-
rupt handling, efficient resource utili-
zation during spin-polling, improved 
job scheduling, and hardware offload-
ing but for the microsecond regime. 

The high-performance comput-
ing industry has long dealt with low-

Synchronous APIs maintain the model of sequential 
execution, and a thread’s state can be stored on the stack 
without explicit management from the application. This 
leads to code that is shorter, easier-to-understand, more 
maintainable, and potentially even more efficient. In contrast, 
with an asynchronous model, whenever an operation is 
triggered, the code must typically be split up and moved into 
different functions. The control flow becomes obfuscated,  
and it becomes the application’s responsibility to manage  
the state between asynchronous event-handling functions  
that run to completion. 

Consider a simple example where a function returns 
the number of words that appears in a given document 
identifier where the implementation may store the cached 
documents on a microsecond-scale device. The example 
represented in the first code portion makes two synchronous 
accesses to microsecond-scale devices: the first retrieves an 
index location for the document, and the second uses that 
location to retrieve the actual document content for counting 
words. With a synchronous programming model, it is not only 
straightforward but the model also can completely abstract 
away device accesses altogether by providing a natural, 
synchronous CountWords function with familiar syntax.

// Returns the number of words found in the document specified by ‘doc_id’.
int CountWords(const string& doc_id) {
  Index index;
  bool status = ReadDocumentIndex(doc_id, &index);
  if (!status) return -1;
  string doc;
  status = ReadDocument(index.location, &doc);
  if (!status) return -1;
  return CountWordsInString(doc);
}

The C++11 example in the second code portion shows an 
asynchronous model where a “callback” (commonly known as 
a “continuation”) is used. When the asynchronous operation 
completes, the event-handling loop invokes the callback 
to continue the computation. Since two asynchronous 
operations are made, two callbacks are needed. Moreover 
the CountWords API now must be asynchronous itself. And 
unlike the synchronous example, state between asynchronous 
operations must be explicitly managed and tracked on the 
heap rather than on a thread’s stack. 

// Heap-allocated state tracked between asynchronous operations.
struct AsyncCountWordsState {
  bool status;
  std::function<void(int)> done_callback;
  Index index;
  string doc;
};

// Invokes the ‘done’ callback, passing the number of words found in the
// document specified by ‘doc_id’.
void AsyncCountWords(const string& doc_id, std::function<void(int)> done) {
  // Kick off the first asynchronous operation, and invoke the
  // ReadDocumentIndexDone when it finishes. State between asynchronous
  // operations is tracked in a heap-allocated ‘state’ object.
  auto state = new AsyncCountWordsState();
  state->done_callback = done;
  AsyncReadDocumentIndex(doc_id, &state->status, &state->index,
                         std::bind(&ReadDocumentIndexDone, state));
}

// First callback function.
void ReadDocumentIndexDone(AsyncCountWordsState* state) {
  if (!state->status) {
    state->done_callback(-1);
    delete state;
  } else {
    // Kick off the second asynchronous operation, and invoke the
    // ReadDocumentDone function when it finishes. The 'state' object
    // is passed to the second callback for final cleanup.
    AsyncReadDocument(state->index.location, &state->status,
                      &state->doc, std::bind(&ReadDocumentDone, state));
  }
}

// Second callback function.
void ReadDocumentDone(AsyncCountWordsState* state) {
  if (!state->status) {
    state->done_callback(-1);
  } else {
    state->done_callback(CountWordsInString(state->doc));
  }
  delete state;
}

Callbacks make the flow of control explicit rather than just in-
voking a function and waiting for it to complete. While languages and 
libraries can make it somewhat easier to use callbacks and continua-
tions (such as support for async/await, lambdas, tasks, and futures), 
the result remains code that is arguably messier and more difficult to 
understand than a simple synchronous function-calling model. 

In this asynchronous example, wrapping the code inside  
a synchronous CountWords() function—in order to abstract 
away the presence of an underlying asynchronous microsecond-
scale device—requires support for a wait primitive. The existing 
approaches for waiting on a condition invoke operating system 
support for thread scheduling, thereby incurring significant 
overhead when wait times are at the microsecond scale. 

Synchronous/Asynchronous  
Programming Models
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(vs. performance-per-total-cost-of-
ownership in large-scale Web deploy-
ments). Consequently, they can keep 
processors highly underutilized when, 
say, blocking for MPI-style rendezvous 
messages. In contrast, a key emphasis 
in warehouse-scale computing systems 
is the need to optimize for low latencies 
while achieving greater utilizations. 

As discussed, traditional processor 
optimizations to hide latency run out 
of instruction-level pipeline parallel-
ism to tolerate microsecond latencies. 
System designers need new hardware 
optimizations to extend the use of syn-
chronous blocking mechanisms and 
thread-level parallelism to the micro-
second range. 

Context switching can help, al-
beit at the cost of increased power 
and latency. Prior approaches for 
fast context switching (such as Denelcor  
HEP15 and Tera MTA computers1) traded 
off single-threaded performance, giving  
up on latency advantages from local-
ity and private high-level caches and, 
consequently, have limited appeal in 
a broader warehouse-scale computing 
environment where programmers want 
to tolerate microsecond events with low 
overhead and ease of programmability. 
Some languages and runtimes (such as 
Go and Erlang) feature lightweight 
threads5,7 to reduce memory and context-
switch overheads associated with oper-
ating system threads. But these systems 
fall back to heavier-weight mechanisms 
when dealing with I/O. For example, the 
Grappa platform13 builds an efficient 
task scheduler and communication 
layer for small messages but trades off a 
more restricted programming environ-
ment and less-efficient performance 
and also optimizes for throughput. New 
hardware ideas are needed to enable con-
text switching across a large number of 
threads (tens to hundreds per processor, 
though finding the sweet spot is an open 
question) at extremely fast latencies 
(tens of nanoseconds). 

Hardware innovation is also needed 
to help orchestrate communication with 
pending I/O, efficient queue manage-
ment and task scheduling/dispatch, and 
better processor state (such as cache) 
management across several contexts. 
Ideally, future schedulers will have rich 
support for I/O (such as being able to 
park a thread based on the readiness of 
multiple I/O operations). For instance, 

facilities similar to the x86 monitor/
mwait instructionsa could allow a thread 
to yield until an I/O operation completes 
with very low overhead. Meanwhile, the 
hardware could seamlessly schedule a 
different thread. To reduce overhead fur-
ther, a potential hardware implementa-
tion could cache the thread’s context in 
either the existing L1/L2/L3 hierarchy 
or a special-purpose context cache. Im-
proved resource isolation and quality-
of-service control in hardware will also 
help. Hardware support to build new 
instrumentation to track microsecond 
overheads will also be useful. 

Finally, techniques to enable micro-
second-scale devices should not neces-
sarily seek to keep processor pipelines 
busy. One promising solution might 
instead be to enable a processor to stop 
consuming power while a microsecond-
scale access is outstanding and shift 
that power to other cores not blocked 
on accesses. 

Conclusion 
System designers can no longer ig-
nore efficient support for microsec-
ond-scale I/O, as the most useful new 
warehouse-scale computing technolo-
gies start running at that time scale. 
Today’s hardware and system software 
make an inadequate platform, par-
ticularly given support for synchro-
nous programming models is deemed 
critical for software productivity. Novel 
microsecond-optimized system stacks 
are needed, reexamining questions 
around appropriate layering and ab-
straction, control and data plane sepa-
ration, and hardware/software bound-
aries. Such optimized designs at the 
microsecond scale, and corresponding 
faster I/O, can in turn enable a virtuous 
cycle of new applications and program-
ming models that leverage low-latency 
communication, dramatically increas-
ing the effective computing capabili-
ties of warehouse-scale computers. 
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