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Abstract
The computational requirements for training deep neu-

ral networks (DNNs) have grown to the point that it is
now standard practice to parallelize training. Existing
deep learning systems commonly use data or model par-
allelism, but unfortunately, these strategies often result in
suboptimal parallelization performance.

In this paper, we define a more comprehensive search
space of parallelization strategies for DNNs called SOAP,
which includes strategies to parallelize a DNN in the
Sample, Operation, Attribute, and Parameter dimensions.
We also propose FlexFlow, a deep learning framework
that uses guided randomized search of the SOAP space
to find a fast parallelization strategy for a specific parallel
machine. To accelerate this search, FlexFlow introduces
a novel execution simulator that can accurately predict a
parallelization strategy’s performance and is three orders
of magnitude faster than prior approaches that have to
execute each strategy. We evaluate FlexFlow with six
real-world DNN benchmarks on two GPU clusters and
show that FlexFlow can increase training throughput by
up to 3.8× over state-of-the-art approaches, even when
including its search time, and also improves scalability.

1 Introduction
Over the past few years, deep neural networks (DNNs)
have driven advances in many practical problems, such as
image classification [28, 38], speech recognition [20, 8],
machine translation [42, 9], and game playing [37]. Be-
cause sophisticated DNN models [23, 40] and larger train-
ing datasets [16, 11] have increased the computational
requirements to train DNN models, it is now standard
practice to parallelize training across distributed hetero-
geneous clusters [7, 15].

Although DNN applications and the clusters used to
parallelize them are increasingly complex, the strate-
gies used by today’s deep learning systems (e.g., Ten-
sorFlow [7], PyTorch [6], Caffe2 [2], MXNet [12]) to
parallelize training remain simple. The most common
parallelization technique is data parallelism [28], which
places a replica of the entire neural network on each de-
vice, so that each device processes a subset of the training
data and synchronizes network parameters in different
replicas at the end of an iteration. Data parallelism is effi-
cient for compute-intensive DNN operations with a few
trainable parameters (e.g., convolution) but achieves sub-
optimal parallelization performance for operations with a

large number of parameters (e.g., matrix-multiplication).
Another common parallelization strategy is model par-
allelism [15], which assigns disjoint subsets of a neural
network each to a dedicated device. Model parallelism
eliminates parameter synchronization between devices
but requires data transfers between operations and disal-
lows parallelism within an operation.

Previous work [27, 42] has proposed expert-designed
strategies that manually optimize parallelization based on
human experts’ domain knowledge and intuitions. For
example, [27] uses data parallelism for convolutional
and pooling layers and switches to model parallelism for
fully-connected layers to accelerate training convolutional
neural networks. Expert-designed strategies achieve im-
proved performance compared to data and model paral-
lelism but still result in suboptimal behaviors. Section 8
shows that we are able to find parallelization strategies
that are up to 2.3× faster than expert-designed strategies.

In addition to these manually designed parallelization
strategies, recent work has proposed automated frame-
works [33, 25] for finding efficient parallelization strate-
gies in a limited search space. For example, REIN-
FORCE [33] uses a reinforcement learning model to learn
efficient operation assignments for model parallelism
by running diverse strategies on real devices. As an-
other example, OptCNN [25] is designed for parallelizing
DNNs with linear computation graphs (e.g., AlexNet [28],
VGG [38]) and automatically finds strategies that exploit
parallelism within each DNN operation. Existing auto-
mated frameworks only explore either parallelism across
different operations (e.g., REINFORCE) or parallelism
within a single operation (e.g., OptCNN) and therefore
miss faster strategies that use parallelism in both dimen-
sions. We show that exploring a broader search space
discovers parallelization strategies 1.2-3.8× faster than
existing automated frameworks (see Section 8).

In this paper, we present FlexFlow, a deep learning
framework that automatically finds fast parallelization
strategies over a significantly broader search space than
previous systems. To formalize the problem, we first de-
fine the SOAP (Sample-Operation-Attribute-Parameter)
search space of parallelization strategies for DNNs. The
operation dimension describes how different operations
in a DNN are parallelized. In addition, for a single DNN
operation, the sample and parameter dimensions indi-
cate how training samples and model parameters are dis-
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tributed across devices. Finally, the attribute dimension
defines how different attributes within a sample are par-
titioned. Compared to existing systems that parallelize
DNNs in a subset of SOAP dimensions, FlexFlow con-
siders parallelizing DNNs in all these dimensions and
therefore defines a more comprehensive search space that
includes existing approaches as special cases.

A key challenge with the much larger SOAP search
space is effectively evaluating candidate parallelization
strategies to find an efficient one. Prior work such as RE-
INFORCE [33] relies on executing each parallelization
strategy on the hardware for one iteration to measure its
execution time. Unfortunately, this approach becomes
prohibitively expensive with the multiple orders of mag-
nitude larger SOAP search space.

To address this problem, FlexFlow introduces a novel
execution simulator that is accurate for predicting the per-
formance of a parallelization strategy and is three orders
of magnitude faster than profiling real executions. The
challenge in designing the simulator is how to accurately
estimate the execution time of different DNN operators
(e.g., convolution and matrix multiplication), which scale
non-linearly in a hardware-dependent way with the data.
The FlexFlow simulator relies on the following two facts:
(1) many DNN models use a small number of distinct
operators (e.g., a neural machine translation model [42]
with hundreds of operators only uses four distinct opera-
tors); and (2) the execution time of each DNN operator
is typically low-variance and largely independent of the
contents of the input data.

The FlexFlow simulator measures the execution time
of an operation once for each input size and uses the mea-
sured time to predict all operations with the same type,
which only takes tens of milliseconds. These estimates
are then used to predict the performance of a wide variety
of parallelization strategies. In addition, the execution
simulator uses a delta simulation algorithm that simu-
lates a new strategy using incremental updates to previous
simulations. Compared to existing approaches [33, 32]
that measure the performance from real executions, our
approach has two advantages. First, the FlexFlow simula-
tor is much faster. As a comparison, REINFORCE [33]
requires 12-27 hours to find an efficient operation as-
signment for model parallelism on 4 GPUs, while the
FlexFlow simulator enables exploring a more comprehen-
sive search space and finding better parallelization strate-
gies (with 3.4-3.8x higher throughput than REINFORCE)
in 14-40 seconds. Furthermore, REINFORCE uses 160
compute nodes (with 4 GPUs on each node) to find an
efficient strategy in tens of hours, while our experiments
use only a single compute node for the simulator.

The execution simulator also achieves high accuracy
for predicting parallelization performance. We evaluate
the simulator with six real-world DNNs on two differ-
ent GPU clusters and show that, for all the measured
executions, the relative difference between the real and
simulated execution time is less than 30%. Most impor-
tantly for the search, we test different strategies for a given
DNN application and show that their simulated execution
time preserves real execution time ordering.

Using the execution simulator as an oracle, the
FlexFlow execution optimizer uses a general Markov
Chain Monte Carlo (MCMC) search algorithm (other
search strategies could also be used) to explore the SOAP
search space and iteratively propose candidate strategies
based on the simulated performance of previous candi-
dates. When the search procedure is finished, the execu-
tion optimizer returns the best strategy it has discovered.

We evaluate FlexFlow on a variety of real-world DNN
benchmarks including image classification [28, 22, 40],
text classification [26], language modeling [43], and neu-
ral machine translation [42]. Compared to data/model
parallelism and expert-designed parallelization strate-
gies [27, 42], FlexFlow increases training throughput
by up to 3.3×, reduces communication costs by up to
5×, and achieves significantly better scaling. In addition,
FlexFlow also outperforms the strategies found by REIN-
FORCE by 3.4-3.8× on the same hardware configuration
evaluated in REINFORCE, and outperforms OptCNN by
1.2-1.6×, by supporting a broader search space.

To summarize, our contributions are:
• We define the SOAP search space for parallelizing

DNN applications, which includes strategies that par-
allelize in any combination of the sample, operation,
attribute, and parameter dimensions.
• We show that under reasonable assumptions it is

possible to reliably predict the execution time of
parallelized DNNs using a simulator that is three
orders of magnitude faster than actually running the
DNNs directly on the hardware.
• We describe FlexFlow, a deep learning framework

that can search for and execute strategies from the
entire SOAP space to accelerate DNN training.
• We show that FlexFlow can increase training

throughput by up to 3.8× over state-of-the-art paral-
lelization approaches while improving scalability.

2 Related Work
Data and model parallelism have been widely used by
existing deep learning systems (e.g., TensorFlow [7],
Caffe2 [2], and PyTorch [6]) to distribute the training
process across devices. Data parallelism [28] keeps a
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Parallelization 
Approach 

Parallelism 
Dimensions 

Hybrid 
Parallelism 

Supported 
DNNs 

Data Parallelism S all 
Model Parallelism O, P all 
Expert-Designed [27, 42] S, O, P all 
REINFORCE O all 
OptCNN S, A, P ✓ linear 
FlexFlow S, O, A, P ✓ all 

Figure 1: The parallelism dimensions explored by dif-
ferent approaches. S, O, A, and P indicate parallelism
in the Sample, Operation, Attribute, and Parameter di-
mensions (see Section 4). Hybrid parallelism shows if an
approach supports parallelizing an operation in a combi-
nation of the sample, attribute, and parameter dimensions
(see FIgure 3). OptCNN is designed for DNNs with linear
computation graphs.

copy of an entire DNN on each device, which is ineffi-
cient for operations with a large number of parameters
(e.g., densely-connected layers) and becomes a scalability
bottleneck in large scale distributed training. Model paral-
lelism [9, 15] splits a DNN into disjoint subsets and trains
each subset on a dedicated device, which reduces commu-
nication costs for synchronizing network parameters in a
DNN but exposes limited parallelism.

Expert-designed parallelization strategies manually
optimize parallelization for specific DNNs by using ex-
perts’ domain knowledge and experience. For example,
[27] introduces “one weird trick” that uses data paral-
lelism for convolutional and pooling layers and switches
to model parallelism for densely-connected layers to ac-
celerate convolutional neural networks. To parallelize
recurrent neural networks, [42] uses data parallelism
that replicates the entire DNN on each compute node
and switches to model parallelism for intra-node paral-
lelization. Although these expert-designed parallelization
strategies achieve performance improvement over data
and model parallelism, they are suboptimal. We use these
expert-designed strategies as baselines in our experiments
and show that FlexFlow can further improve training per-
formance by up to 2.3×.

Automated frameworks have been proposed for find-
ing efficient parallelization strategies in a limited search
space. REINFORCE [33] uses reinforcement learning
to find efficient device placement for model parallelism.
OptCNN [25] is designed for parallelizing DNNs with lin-
ear computation graphs and automatically finds efficient
strategies that exploit parallelism within an operation.

Figure 1 summarizes the parallelism dimensions ex-
plored by existing approaches. Data parallelism uses
the sample dimension to parallelize the training process,

while model parallelism exploits the parameter and op-
eration dimensions. Expert-designed strategies [27, 42]
exploit parallelism in the sample or parameter dimension
to parallelize an operation but do not support hybrid par-
allelism that uses a combination of the sample, attribute,
and parameter dimensions to parallelize an operation (see
Figure 3). Compared to these manually designed strate-
gies, FlexFlow considers more sophisticated, and often
more efficient, strategies to parallelize a single opera-
tion. In addition, compared to existing automated frame-
works [33, 25], FlexFlow explores a significantly broader
search space and is able to find strategies that are up to
3.8× faster.

Graph-based cluster schedulers. Previous work [24,
18] has proposed cluster schedulers that schedule cluster-
wide tasks by using graph-based algorithms. For example,
Quincy [24] maps task scheduling to a flow network and
uses a min-cost max-flow (MCMF) algorithm to find effi-
cient task placement. Firmament [18] generalizes Quincy
by employing multiple MCMF optimization algorithms
to reduce task placement latencies. Existing graph-based
schedulers optimize task placement by assuming a fixed
task graph. However, FlexFlow solves a different problem
that requires jointly optimizing how to partition an op-
eration into tasks by exploiting parallelism in the SOAP
dimensions and how to assign tasks to devices.

3 Overview
In this section, we compare the FlexFlow programming
interface with other frameworks in Section 3.1, provide a
general overview of FlexFlow in Section 3.2, and discuss
the limitations of our approach in Section 3.3.

3.1 Programming Interface

Similar to existing deep learning systems [7, 6, 2],
FlexFlow uses an operator graph G to describe all op-
erations and state in a DNN. Each node oi ∈ G is an oper-
ation (e.g., matrix multiplication, convolution, etc.), and
each edge (oi, oj) ∈ G is a tensor (i.e., a n-dimensional
array) that is an output of oi and an input of oj .

As far as we know, most deep learning systems (e.g.,
TensorFlow [7], PyTorch [6], and Caffe2 [2]) use data par-
allelism as the default parallelization strategy and support
model parallelism as an alternative by allowing users to
manually specify the device placement for each operation.

In contrast, FlexFlow takes a device topology D =
(DN ,DE) describing all available hardware devices and
their interconnections, as shown in Figure 2. Each node
di ∈ DN represents a device (e.g., a CPU or a GPU), and
each edge (di, dj) ∈ DE is a hardware connection (e.g.,
a NVLink, a PCI-e, or a network link) between device di
and dj . The edges are labeled with the bandwidth and
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Figure 2: FlexFlow overview.

latency of the connection.
FlexFlow automatically finds a parallelization strategy

for an operator graph and a device topology. Compared
to existing frameworks, FlexFlow has two advantages:

Programmability. For DNN applications with com-
plex operator graphs running on clusters with deep device
topologies, it is difficult for application developers, even
domain experts, to manually design efficient operation
assignments. FlexFlow takes the responsibility for find-
ing efficient parallelization strategies and provides a more
productive programming interface.

Portability. A parallelization strategy fine-tuned
for one cluster may behave poorly on other clusters.
FlexFlow’s search method automatically selects an ef-
ficient strategy for each hardware configuration, without
requiring application changes.

3.2 FlexFlow Architecture

The main components of FlexFlow are shown in Figure 2.
The FlexFlowexecution optimizer takes an operator graph
and a device topology as inputs and automatically gen-
erates an efficient parallelization strategy. The optimizer
uses a MCMC search algorithm to explore the space of
possible parallelization strategies and iteratively proposes
candidate strategies that are evaluated by a execution sim-
ulator. The execution simulator uses a delta simulation
algorithm that simulates a new strategy using incremental
updates to previous simulations. The simulated execution
time guides the search in generating future candidates.
When the search time budget is exhausted, the execu-
tion optimizer sends the best discovered strategy to a
distributed runtime for parallelizing the actual executions.

3.3 Limitations

The main limitation of our approach is that the execution
simulator assumes the execution time of each operation is
predictable and independent of the contents of input ten-

Table 1: Parallelizable dimensions for different opera-
tions. The sample and channel dimension index different
samples and neurons in a tensor, respectively. For 1D and
2D images, the length and the combination of height and
width dimensions specify a position in an image.

Operation Parallelizable Dimensions
(S)ample (A)ttribute (P)arameter

1D pooling sample length, channel
1D convolution sample length channel
2D convolution sample height, width channel
Matrix multiplication sample channel

Sample	 Sample	Sample	 Sample	Le
ng
th	Ch

an
ne

l	

Ch
an
ne

l	

Le
ng
th	Ch

an
ne

l	

Le
ng
th	 Ch

an
ne

l	

Le
ng
th	

Data	Parallelism	
(S)	

Model	Parallelism	
(P)	

Hybrid	Parallelism	
(S,	P)	

Hybrid	Parallelism	
(S,	A,	P)	

Figure 3: Example parallelization configurations for 1D
convolution. Dashed lines show partitioning the tensor.

sors, as we discuss in Section 5. Therefore, our approach
may not be applicable to applications whose execution
time is data dependent. However, for the DNN applica-
tions that are the subject of study here, which are based
on dense matrix operations, execution time is highly pre-
dictable and independent of the contents of the matrices.

4 The SOAP Search Space
This section introduces the SOAP search space of par-
allelization strategies for DNNs. To parallelize a DNN
operation across devices, we require each device to com-
pute a disjoint subset of the operation’s output tensors.
Therefore, we model the parallelization of an operation
oi by defining how the output tensor of oi is partitioned.

For an operation oi, we define its parallelizable dimen-
sions Pi as the set of all divisible dimensions in its output
tensor. Pi always includes a sample dimension. For all
other dimensions in Pi, we call it a parameter dimension
if partitioning over that dimension requires splitting the
model parameters and call it an attribute dimension other-
wise. Table 1 shows the parallelizable dimensions of some
example operations. Finally, we also consider parallelism
across differ operations in the operation dimension.

A parallelization configuration ci of an operation oi
defines how the operation is parallelized across multiple
devices. Figure 3 shows some example configurations for
parallelizing a 1D convolution operation in a single di-
mension as well as combinations of multiple dimensions.

For each parallelizable dimension in Pi, ci includes a
positive integer that is the degree of parallelism in that
dimension. |ci| is the product of the parallelism degrees
for all parallelizable dimensions of ci. We use equal size
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Figure 4: An example parallelization configuration for a
matrix multiplication operation.

partitions in each dimension to guarantee well-balanced
workload distributions. A parallelization configuration
ci partitions the operation oi into |ci| independent tasks,
denoted as ti:1, ..., ti:|ci|, meanwhile ci also includes the
device assignment for each task ti:k (1 ≤ k ≤ |ci|). Given
the output tensor of a task and its operation type, we can
infer the necessary input tensors to execute each task.

Figure 4 shows an example parallelization configura-
tion for a matrix multiplication operation (i.e., Y =WX).
The operation is partitioned into four independent tasks
assigned to dedicated GPU devices. The input and output
tensors of the tasks are shown in the figure.

A parallelization strategy S describes one possible par-
allelization of an application. S includes a parallelization
configuration ci for each operation oi, and each oi’s con-
figuration can be chosen independently from among all
possible configurations for oi.

5 Execution Simulator
In this section, we describe the execution simulator, which
takes an operator graph G, a device topology D, and a
parallelization strategy S as inputs and predicts the ex-
ecution time to run G on D using strategy S. FlexFlow
simulates the execution process instead of measuring the
elapsed time from real executions for two reasons. First,
processing one iteration of a DNN application can take
seconds even on modern GPUs [19, 7]. The simulator
runs up to three orders of magnitude faster than real ex-
ecutions and allows the execution optimizer to explore
many more candidates in a given time budget. Second, the
execution simulator requires fewer computation resources.
A large-scale execution on thousands of devices can be
simulated on a single node.

The simulator depends on the following assumptions:

A1. The execution time of each task is predictable with
low variance and is independent of the contents of
input tensors.

A2. For each connection (di, dj) between device di and
dj with bandwidth b, transferring a tensor of size s
from di to dj takes s/b time (i.e., the communication
bandwidth can be fully-utilized).

A3. Each device processes the assigned tasks with a
FIFO (first-in-first-out) scheduling policy. This is
the policy used by modern devices such as GPUs.

A4. The runtime has negligible overhead. A device be-
gins processing a task as soon as its input tensors are
available and the device has finished previous tasks.

To simulate an execution, the simulator first builds a
task graph, which includes all tasks derived from oper-
ations and dependencies between tasks, and then runs a
simulation algorithm to generate an execution timeline.
Section 5.1 describes task graph construction. Section 5.2
introduces a full simulation algorithm that builds time-
lines from scratch. Finally, Section 5.3 introduces an
alternative delta simulation algorithm that generates a
new timeline using incremental updates to a previous one.

5.1 Task Graph

A task graph models dependencies between individual
tasks derived from operations and can also represent task
execution timelines on individual devices. To unify the
abstraction, we treat each hardware connection between
devices as a communication device, and each data transfer
as a communication task. Note that devices and hardware
connections are modeled as separate devices. This allows
computation (i.e., normal tasks) and communication (i.e.,
communication tasks) to be overlapped if possible.

Given an operator graph G, a device topology D, and a
parallelization strategy S, we use the following steps to
construct a task graph T = (TN , TE), where each node
t ∈ TN is a task (i.e., a normal task or a communication
task) and each edge (ti, tj) ∈ TE is a dependency that
task tj cannot start until task ti is completed. Note that the
edges in the task graph are simply ordering constraints—
the edges do not indicate data flow, as all data flow is
included in the task graph as communication tasks.

1. For each operation oi ∈ G with parallelization con-
figuration ci, we add tasks ti:1, ..., ti:|ci| into TN .

2. For each tensor (oi, oj) ∈ G, which is an output
of operation oi and an input of oj , we compute the
output sub-tensors written by tasks ti:ki

(1 ≤ ki ≤
|ci|) and the input sub-tensors read by tasks tj:kj

(1 ≤ kj ≤ |cj |). For every task pair ti:ki
and tj:kj

with shared tensors, if two tasks are assigned to the
same device, we add an edge (ti:ki , tj:kj ) into TE ,
indicating a dependency between the two tasks, and
no communication task is needed. If ti:ki

and tj:kj
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(c) The task graph after the
full simulation algorithm.
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(d) The task graph after the
delta simulation algorithm.

Figure 5: Simulating an example parallelization strategy. The tasks’ exeTime and device are shown on the top
of each column. In Figure 5c and 5d, the word “r” and “s” indicate the readyTime and startTime of each task,
respectively, and the dashed edges represents the nextTask.

Table 2: Properties for each task in the task graph.
Property Description

Properties set in graph construction
exeTime The elapsed time to execute the task.
device The assigned device of the task.
I(t) {tin|(tin, t) ∈ TE}
O(t) {tout|(t, tout) ∈ TE}

Properties set in simulation
readyTime The time when the task is ready to run.
startTime The time when the task starts to run.
endTime The time when the task is completed.
preTask The previous task performed on device.
nextTask The next task performed on device.

Internal properties used by the full simulation algorithm

state
Current state of the task, which is one of
NOTREADY, READY, and COMPLETE.

with shared tensors are assigned to different devices,
we add a communication task tc to TN and two edges
(ti:ki

, tc) and (tc, tj:kj
) to TE . The new task tc is

assigned to the communication device between the
devices that perform ti:ki

and tj:kj
.

Figure 5a shows an example parallelization strategy for
a standard 3-layer recurrent neural network consisting of
an embedding layer, a recurrent layer, and a linear layer.
The parallelization strategy represents commonly used
model parallelism that assigns operations in each layer to
a dedicated GPU. Figure 5b shows the corresponding task
graph. Each square and hexagon indicate a normal task
and a communication task, respectively, and each directed
edge represents a dependency between tasks.

Table 2 lists the properties for each task in the task
graph. The exeTime property is set during the graph
construction. For a normal task derived from an operation,
its exeTime is the time to execute the task on the given
device and is estimated by running the task multiple times
on the device and measuring the average execution time
(assumption A1). A task’s exeTime is cached, and all
future tasks with the same operation type and output size
will use the cached value without rerunning the task. For a
communication task, its exeTime is the time to transfer
a tensor (of size s) between devices with bandwidth b and

Algorithm 1 Full Simulation Algorithm.
1: Input: An operator graph G, a device topology D, and a paralleliza-

tion strategy S.
2: T = BUILDTASKGRAPH(G, D, S)
3: readyQueue = {} // a priority queue sorted by readyTime
4: for t ∈ TN do
5: t.state = NOTREADY
6: if I(t) = {} then
7: t.state = READY
8: readyQueue.enqueue(t)
9: while readyQueue 6= {} do

10: Task t = readyQueue.dequeue()
11: Device d = t.device
12: t.state = COMPLETE
13: t.startTime = max{t.readyTime, d.last.endTime}
14: t.endTime = t.startTime + t.exeTime
15: d.last = t
16: for n ∈ O(t) do
17: n.readyTime = max{n.readyTime, t.endTime}
18: if all tasks in I(n) are COMPLETE then
19: n.state = READY
20: readyQueue.enqueue(n)
21: return max{t.endTime | t ∈ TN}

is estimated as s/b (assumption A2).
In addition to the exeTime property, FlexFlow also

sets the device, I(t), and O(t) (defined in Table 2)
during graph construction. Other properties in Table 2
remain unset and must be filled in by the simulation.

5.2 Full Simulation Algorithm

We now describes a full simulation algorithm that we will
use as a baseline for comparisons with our delta simula-
tion algorithm. Algorithm 1 shows the pseudocode. It
first builds a task graph using the method described in
Section 5.1 and then sets the properties for each task using
a variant of Dijkstra’s shortest-path algorithm [14]. Tasks
are enqueued into a global priority queue when ready (i.e.,
all predecessor tasks are completed) and are dequeued in
increasing order by their readyTime. Therefore, when
a task t is dequeued, all tasks with an earlier readyTime
have been scheduled, and we can set the properties for
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Algorithm 2 Delta Simulation Algorithm.
1: Input: An operator graph G, a device topology D, an original task

graph T , and a new configuration c′i for operation oi.
2: updateQueue = {} // a priority queue sorted by readyTime
3: /*UPDATETASKGRAPH returns the updated task graph and a list

of tasks with new readyTime*/
4: T ,L = UPDATETASKGRAPH(T , G, D, ci, c′i)
5: updateQueue.enqueue(L)
6: while updateQueue 6= {} do
7: Task t = updateQueue.dequeue()
8: t.startTime = max{t.readyTime, t.preTask.endTime}
9: t.endTime = t.startTime + t.exeTime

10: for n ∈ O(t) do
11: if UPDATETASK(n) then
12: updateQueue.push(n)
13: if UPDATETASK(t.nextTask) then
14: updateQueue.push(t.nextTask)
15: return max{t.endTime | t ∈ TN}
16:
17: function UPDATETASK(t)
18: t.readyTime = max{p.endTime | p ∈ I(t)}
19: /*Swap t with other tasks on the device to maintain FIFO.*/
20: t.startTime = max{t.readyTime, t.preTask.endTime}
21: if t’s readyTime or startTime is changed then
22: return True
23: else
24: return False

task t while maintaining the FIFO scheduling order (as-
sumption A3). Figure 5c shows the execution timeline of
the example parallelization strategy.

5.3 Delta Simulation Algorithm

FlexFlow uses a MCMC search algorithm that proposes a
new parallelization strategy by changing the paralleliza-
tion configuration of a single operation in the previous
strategy (see Section 6.2). As a result, in the common case,
most of the execution timeline does not change from one
simulated strategy to the next. Based on this observation,
we introduce a delta simulation algorithm that starts from
a previous task graph and only re-simulates tasks involved
in the portion of the execution timeline that changes, an
optimization that dramatically speeds up the simulator,
especially for strategies for large distributed machines.
The full and delta simulation algorithms always produce
the same timeline for a given task graph.

Algorithm 2 shows the pseudocode for the delta simu-
lation algorithm. It first updates tasks and dependencies
in the task graph and enqueues all modified tasks into a
global priority queue (line 4-5). Similar to the Bellman-
Ford shortest-path algorithm [14], the delta simulation
algorithm iteratively dequeues updated tasks and propa-
gates the updates to subsequent tasks (line 6-14).

For the example in Figure 5, consider a new paralleliza-
tion strategy derived from the original strategy (Figure 5a)
by only reducing the parallelism of operation o3 to 1 (i.e.,

|c3| = 1). Figure 5d shows the task graph for the new
parallelization strategy, which can be generated from the
original task graph (in Figure 5c) by updating the simula-
tion properties of tasks in the grey area.

6 Execution Optimizer
This section describes the execution optimizer that takes
an operator graph and a device topology as inputs and
automatically finds an efficient parallelization strategy.
Using the simulator as an oracle, FlexFlow transforms the
parallelization optimization problem into a cost minimiza-
tion problem, namely minimizing the predicted execution
time. The primary advantage of this approach is that it
avoids explicitly encoding the trade-offs between interde-
pendent optimizations (e.g., reducing data transfers v.s.
balancing workload distributions) and simply focuses on
minimizing the application’s overall execution time.

Finding the optimal parallelization strategy is NP-hard,
by an easy reduction from minimum makespan [29]. In
addition, as described in Section 4, the number of possi-
ble strategies is exponential to the number of operations
in the operator graph, which makes it intractable to ex-
haustively enumerate the search space. To find a low-cost
strategy, FlexFlow uses a cost minimization search pro-
cedure to heuristically explore the space and returns the
best strategy discovered.

6.1 MCMC Sampling

This section briefly introduces the MCMC sampling
method used by the execution optimizer. MCMC sam-
pling is a technique for obtaining samples from a proba-
bility distribution so that higher probability samples are
visited proportionately more often than low probability
samples. A common method (described in [17]) to trans-
form a cost function cost(·) into a probability distribution
is the following, where β is a constant that can be chosen:

p(S) ∝ exp
(
− β · cost(S)

)
(1)

MCMC works by starting at any point in the search
space (a random point, or perhaps a well-known start-
ing point) and then generating a sequence of points with
the guarantee that in the limit the set of points visited
approaches the distribution given by p(·). In our setting,
we begin with some parallelization strategy S0 and then
generate a sequence of strategies S0,S1, . . ..

We use the Metropolis-Hastings algorithm [21] for gen-
erating Markov chains, which maintains a current strategy
S and proposes a modified strategy S∗ from a proposal
distribution q(S|S∗). If the proposal is accepted, S∗ be-
comes the new current strategy, otherwise another strategy
based on S is proposed. This process is repeated indef-
initely (e.g., until a time budget is exhausted). If the
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Table 3: Details of the DNNs and datasets used in evaluation.
DNN Description Dataset Reported Acc. Our Acc.

Convolutional Neural Networks (CNNs)
AlexNet [28] A 12-layer CNN Synthetic data - -
Inception-v3 [40] A 102-layer CNN with Inception modules [39] ImageNet [36] 78.0%a 78.0%a

ResNet-101 [22] A 101-layer residual CNN with shortcut connections ImageNet [36] 76.4%a 76.5%a

Recurrent Neural Networks (RNNs)
RNNTC [26] 4 recurrent layers followed by a softmax layer Movie Reviews [1] 79.8% 80.3%
RNNLM [43] 2 recurrent layers followed by a softmax layer Penn Treebank [31] 78.4b 76.1b

NMT [42] 4 recurrent layers followed by an attention and a softmax layer WMT English-German [3] 19.67c 19.85c

a top-1 accuracy for single crop on the validation dataset (higher is better).
b word-level test perplexities on the Peen Treebank dataset (lower is better).
c BLEU scores [34] on the test dataset (higher is better).

proposal distribution is symmetric, q(S|S∗) = q(S∗|S),
the acceptance criteria of a new strategy is the following:

α(S → S∗) = min
(
1, p(S∗)/p(S)

)
= min

(
1, exp

(
β · (cost(S)− cost(S∗)

)) (2)

The acceptance criteria has several important proper-
ties. If S∗ has a lower cost than S, then S∗ is always
accepted. If S∗ has a higher cost than S, then S∗ may
still be accepted with a probability that decreases as a
function of the difference between cost(S) and cost(S∗).
Intuitively, MCMC tends to behave as a greedy search al-
gorithm, preferring to move towards lower cost whenever
that is readily available, but can also escape local minima.

6.2 Search Algorithm

Our method for generating proposals is simple: an oper-
ation in the current parallelization strategy is selected at
random, and its parallelization configuration is replaced
by a random configuration. Our definition of the pro-
posal distribution q(·) satisfies the symmetry property,
q(S|S∗) = q(S∗|S), since, for any operation, its configu-
rations are selected with the same probability.

We uses existing strategies (e.g., data parallelism,
expert-designed strategies) as well as randomly generated
strategies as the initial candidates for the search algorithm.
For each initial strategy, the search algorithm iteratively
proposes new candidates until one of the following two
criteria is satisfied: (1) the search time budget for current
initial strategy is exhausted; or (2) the search procedure
cannot further improve the best discovered strategy for
half of the search time.

7 FlexFlow Runtime
We found that existing deep learning systems (e.g., Ten-
sorFlow [7], PyTorch [6], Caffe2 [2], and MXNet [12])
only support parallelizing an operation in the batch di-
mension through data parallelism, and it is non-trivial to
parallelize an operation in other dimensions or combina-
tions of several dimensions in these systems. In addition,
we are not aware of any existing system that supports
parallelization at the granularity of individual operations.

To support parallelizing DNN models using any strat-
egy defined in our parallelization space (see Section 4),
we implemented the FlexFlow distributed runtime in Le-
gion [10], a high-performance parallel runtime for dis-
tributed heterogeneous architectures, and use cuDNN [13]
and cuBLAS [4] as the underlying libraries for processing
DNN operations. We use the Legion high-dimensional
partitioning interface [41] to support parallelizing an oper-
ation in any combination of the parallelizable dimensions
and use Legion’s fine-grain control mechanism to control
parallelization at the granularity of each operation.

The key difference between the FlexFlow runtime and
existing systems is that FlexFlow supports parallelizing
an operation in any combination of the parallelizable di-
mensions and controls parallelization at the granularity of
individual operations.

8 Evaluation
This section evaluates the performance of FlexFlow on
six real-world DNN benchmarks and two GPU clusters.
Section 8.1 describes the experimental setup for the eval-
uation. Section 8.2 compares FlexFlow with state-of-the-
art parallelization approaches. Section 8.3 evaluates the
accuracy and efficiency of the execution simulator. Sec-
tions 8.4 and 8.5 evaluate the quality of the best strategies
discovered by the execution optimizer and discuss two of
the best discovered strategies.

8.1 Experimental Setup

Table 3 summarizes the DNNs used in our experiments.
AlexNet, Inception-v3, and ResNet-101 are three CNNs
that achieved the best accuracy in the ILSVRC compe-
titions [35]. For AlexNet, the per-iteration training time
is smaller than the time to load training data from disk.
We follow the suggestions in [5] and use synthetic data
to benchmark the performance of AlexNet. For all other
experiments, the training data is loaded from disk in the
training procedure.

RNNTC, RNNLM and NMT are sequence-to-sequence
RNN models for text classification, language model-
ing, and neural machine translation, respectively. RN-
NTC uses four LSTM layers with a hidden size of 1024.
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Figure 6: Architectures of the GPU clusters used in the
experiments. An arrow line indicates a NVLink connec-
tion. A solid line is a PCI-e connection. Dashed lines are
Infiniband connections across different nodes.

RNNLM uses two LSTM layers with a hidden size of
2048. Both RNN models include a softmax linear after
the last LSTM layer. NMT includes an encoder and a
decoder, both of which consist of 2 LSTM layers with
a hidden size of 1024. To improve model accuracy, we
also use an attention layer [9] on top of the last decoder
LSTM layer. Figure 14 illustrates the structure of the
NMT model. For all three RNN models, we set the num-
ber of unrolling steps for each recurrent layer to 40.

We follow prior work [28, 40, 22, 26, 43, 42] to con-
struct operator graphs and set hyperparameters (e.g., learn-
ing rates, weight decays). We use synchronous training
and a batch size of 64 for all DNN benchmarks, except
for AlexNet, which uses a batch size of 256.

To evaluate the performance of FlexFlow with different
device topologies, we performed the experiments on two
GPU clusters, as shown in Figure 6. The first cluster con-
tains 4 compute nodes, each of which is equipped with
two Intel 10-core E5-2600 CPUs, 256GB main memory,
and four NVIDIA Tesla P100 GPUs. GPUs on the same
node are connected by NVLink, and nodes are connected
over 100GB/s EDR Infiniband. The second cluster con-
sists of 16 nodes, each of which is equipped with two Intel
10-core E5-2680 GPUs, 256GB main memory, and four
NVIDIA Tesla K80 GPUs. Adjacent GPUs are connected
by a separate PCI-e switch, and all GPUs are connected to
CPUs through a shared PCI-e switch. Compute nodes in
the cluster are connected over 56 GB/s EDR Infiniband.

Unless otherwise stated, we set 30 minutes as the time
budget for the execution optimizer and use data paral-
lelism and a randomly generated parallelization strategy
as the initial candidates for the search algorithm. As
shown in Section 8.3.2, the search procedure terminates
in a few minutes for most executions.

8.2 Parallelization Performance

8.2.1 Per-iteration Performance

We compare the per-iteration training performance of
FlexFlow with the following baselines. Data parallelism is
commonly used in existing deep learning systems [7, 2, 6].

1(1) 2(1) 4(1) 8(2) 16(4) 32(8)64(16)
0

500

1000

1500

2000

2500
AlexNet (batch size = 256)

1(1) 2(1) 4(1) 8(2) 16(4) 32(8)64(16)
0

50

100

150

200
Inception_v3 (batch size = 64)

1(1) 2(1) 4(1) 8(2) 16(4) 32(8)64(16)
0

50

100

150

200
ResNet-101 (batch size = 64)

1(1) 2(1) 4(1) 8(2) 16(4) 32(8)64(16)
0

100

200

300

400

500

600
RNNTC (batch size = 64)

1(1) 2(1) 4(1) 8(2) 16(4) 32(8)64(16)
0

50

100

150

200

250

300

350

400
RNNLM (batch size = 64)

1(1) 2(1) 4(1) 8(2) 16(4) 32(8)64(16)
0

50

100

150

200

250

300

350

400
NMT (batch size = 64)

N
u

m
. 

S
a
m

p
le

s
/s

e
c
o
n

d
/G

P
U

Num. Devices

Data Parallelism (P100)

Expert-designed Strategy (P100)

FlexFlow (P100)

Data Parallelism (K80)

Expert-designed Strategy (K80)

FlexFlow (K80)

Figure 7: Per-iteration training performance on six DNN
benchmarks. Numbers in parenthesis are the number of
compute nodes used in the experiments. The dash lines
show the ideal training throughput.

To control for implementation differences, we ran data
parallelism experiments in TensorFlow r1.7, PyTorch
v0.3, and our implementation and compared the perfor-
mance numbers. Compared to TensorFlow and PyTorch,
FlexFlow achieves the same or better performance num-
bers on all six DNN benchmarks, and therefore we report
the data parallelism performance achieved by FlexFlow
in the experiments.

Expert-designed strategies optimize parallelization
based on domain experts’ knowledge and experience.
For CNNs, [27] uses data parallelism for parallelizing
convolutional and pooling layers and switches to model
parallelism for densely-connected layers. For RNNs, [42]
uses data parallelism that replicates the entire operator
graph on each compute node and uses model parallelism
that assign operations with the same depth to the same
GPU on each node. These expert-designed strategies
are used as a baseline in our experiments. Model par-
allelism only exposes limited parallelism by itself, and
we compare against model parallelism as a part of these
expert-designed strategies.

Figure 7 shows the per-iteration training performance
on all six DNN benchmarks. For ResNet-101, FlexFlow
finds strategies similar to data parallelism (except using
model parallelism on a single node for the last fully-
connected layer) and therefore achieves similar paral-
lelization performance. For other DNN benchmarks,
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Figure 8: Parallelization performance for the NMT model
on 64 K80 GPUs (16 nodes). FlexFlow reduces per-
iteration execution time by 1.7-2.4× and data transfers by
2-5.5× compared to other approaches. FlexFlow achieves
similar overall task computation time as expert-designed
strategy, which is 20% fewer than data parallelism.

FlexFlow finds more efficient strategies than the base-
lines and achieves 1.3-3.3× speedup. Note that FlexFlow
performs the same operations as data parallelism and
expert-designed strategies, and the performance improve-
ment is achieved by using faster parallelization strategies.
We found that the parallelization strategies discovered by
FlexFlow have two advantages over data parallelism and
expert-designed strategies.

Reducing overall communication costs. Similar to
existing deep learning systems, the FlexFlow distributed
runtime supports overlapping data transfers with compu-
tation to hide communication overheads. However, as
we scale the number of devices, the communication over-
heads increase, but the computation time used to hide
communication remains constant. Therefore, reducing
overall communication costs is beneficial for large-scale
distributed training. Figure 8b shows that, to parallelize
the NMT model on 64 K80 GPUs (16 nodes), FlexFlow
reduces the per-iteration data transfers by 2-5.5× com-
pared to other parallelization approaches.

Reducing overall task computation time. Data par-
allelism always parallelizes an operation in the batch di-
mension. However, as reported in [25], parallelizing an
operation through different dimensions can result in dif-
ferent task computation time. For the matrix multipli-
cation operation in the NMT model, parallelizing it in
the channel dimension reduces the operation’s overall
computation time by 38% compared to parallelizing the
operation in the batch dimension. Figure 8c shows that
FlexFlow reduces the overall task computation time by
20% compared to data parallelism for the NMT model.
The expert-designed strategy achieves slightly better total
task computation time than FlexFlow. However, this is
achieved by using model parallelism on each node, which
disables any parallelism within each operation and results
in imbalanced workloads. As a result, the expert-designed
strategy achieves even worse execution performance than
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Figure 10: Comparison among the parallelization strate-
gies found by different automated frameworks.

data parallelism (see Figure 8a). FlexFlow reduces the
overall task computation time while enabling parallelism
within an operation and maintaining load balance.

8.2.2 End-to-end Performance

FlexFlow performs the same computation as other deep
learning systems for a DNN model and therefore achieves
the same model accuracy. Table 3 verifies that FlexFlow
achieves the state-of-the-art accuracies on the DNN bench-
marks used in the experiments.

In this experiment, we compare the end-to-end train-
ing performance between FlexFlow and TensorFlow on
Inception-v3. We train Inception-v3 on the ImageNet
dataset until the model reaches the single-crop top-1 accu-
racy of 72% on the validation set. The training processes
in both frameworks use stochastic gradient decent (SGD)
with a learning rate of 0.045 and a weight decay of 0.0001.
Figure 9 illustrates the training curves of the two systems
on Inception-v3 and show that FlexFlow reduces the end-
to-end training time by 38% compared to TensorFlow.

8.2.3 Automated Parallelization Optimizer

We compare against two automated frameworks that find
parallelization strategies in a limited search space.

REINFORCE [33] uses reinforcement learning to
learn device placement for model parallelism. We are
not aware of any publicly available implementation of
REINFORCE, so we compare against the learned device
placement for Inception-v3 and NMT, as reported in [33].

Figure 10a compares the training throughput of the
strategies found by FlexFlow and REINFORCE for four
K80 GPUs on a single node. The parallelization strategies
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Table 4: The end-to-end search time with different simulation algorithms (seconds).
Num. AlexNet ResNet Inception RNNTC RNNLM NMT
GPUs Full Delta Speedup Full Delta Speedup Full Delta Speedup Full Delta Speedup Full Delta Speedup Full Delta Speedup

4 0.11 0.04 2.9× 1.4 0.4 3.2× 14 4.1 3.4× 16 7.5 2.2× 21 9.2 2.3× 40 16 2.5×
8 0.40 0.13 3.0× 4.5 1.4 3.2× 66 17 3.9× 91 39 2.3× 76 31 2.5× 178 65 2.7×

16 1.4 0.48 2.9× 22 7.3 3.1× 388 77 5.0× 404 170 2.4× 327 121 2.7× 998 328 3.0×
32 5.3 1.8 3.0× 107 33 3.2× 1746 298 5.9× 1358 516 2.6× 1102 342 3.2× 2698 701 3.8×
64 18 5.9 3.0× 515 158 3.3× 8817 1278 6.9× 4404 1489 3.0× 3406 969 3.6× 8982 2190 4.1×
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Figure 11: Comparison between the simulated and actual
execution time for different DNNs and device topologies.

found by FlexFlow achieve 3.4 - 3.8× speedup compared
to REINFORCE. We attribute the performance improve-
ment to the larger search space explored by FlexFlow.

Besides improving training performance, FlexFlow has
two additional advantages over REINFORCE. First, RE-
INFORCE requires executing each strategy in the hard-
ware environment to get reward signals and takes 12-27
hours to find the best placement [33], while the FlexFlow
execution optimizer finds efficient parallelization strate-
gies for these executions in 14-40 seconds. Second, REIN-
FORCE uses up to 160 compute nodes (with 4 GPUs on
each node) to find the placement in time, while FlexFlow
uses a single compute node to run the execution optimizer.

OptCNN [25] optimizes parallelization for DNNs with
linear operator graphs. OptCNN assumes that different
operations in an operator graph cannot be performed in
parallel and estimates a DNN’s execution time as the sum
of the operations’ computation time and synchronization
time and the tensors’ data transfer time. This assumption
allows OptCNN to use a dynamic programming algorithm
to find an efficient parallelization strategy.

We compare the strategies found by FlexFlow and
OptCNN for different DNNs on 16 P100 GPUs. The
frameworks found the same parallelization strategies for
AlexNet and ResNet with linear operator graphs and
found different strategies for the other DNNs as shown
in Figure 10b. For these DNNs with non-linear operator
graphs, FlexFlow achieves 1.2-1.6× speedup compared
to OptCNN by using parallelization strategies that exploit
parallelism across different operations. We show two
examples in Section 8.5.

8.3 Execution Simulator

We evaluate the performance of the simulator using two
metrics: simulator accuracy and simulator execution time.
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Figure 12: Search performance with the full and delta
simulation algorithms for the NMT model on 16 P100
GPUs (4 nodes).

8.3.1 Simulator Accuracy

In this experiment, we compare the estimated execution
time predicted by the execution simulator with the real
execution time measured by actual executions. Figure 11
shows the results for different DNNs and different avail-
able devices. The dashed lines indicate a relative differ-
ence of 0% and 30%, respectively, which encompasses
the variance between actual and predicted execution time.
In addition, for different parallelization strategies with
the same operator graph and device topology (i.e., points
of the same shape in the figure), their simulated execu-
tion time preserves actual execution time ordering, which
shows that simulated execution time is an appropriate
metric to evaluate the performance of different strategies.

8.3.2 Simulator Execution Time

Figure 12 shows the search performance with different
simulation algorithms for finding a strategy for the NMT
model on 16 P100 GPUs on 4 nodes. The full and delta
simulation algorithms terminate in 16 and 6 minutes,
respectively. If the allowed time budget is less than 8
minutes, the full simulation algorithm will find a worse
strategy than the delta simulation algorithm.

We compare the end-to-end search time of the execu-
tion optimizer with different simulation algorithms. For a
given DNN model and device topology, we measure the
average execution time of the optimizer using 10 random
initial strategies. The results are shown in Table 4. The
delta simulation algorithm is 2.2-6.9× faster than the full
simulation algorithm. Moreover, the speedup over the full
simulation algorithm increases as we scale the number of
devices.
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Figure 13: The best strategy for parallelizing the Inception-v3 model on 4 P100 GPUs. For each operation, the vertical
and horizontal dimensions indicate parallelism in the batch and channel dimension, respectively. Each GPU is denoted
by a color. This strategy reduces the per-iteration execution time by 12% compared to data parallelism.
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Figure 14: The best strategy for parallelizing the NMT
model on 4 P100 GPUs. For each operation, the verti-
cal and horizontal dimensions indicate parallelism in the
batch and channel dimension, respectively. Each grey box
denotes a layer, whose operations share the same network
parameters. Each GPU is denoted by a color.

8.4 Search Algorithm

This section evaluates the quality of the best paralleliza-
tion strategies discovered by the search algorithm.

First, we compare the best discovered strategies with
the global optimal strategies for small executions. To
obtain a search space of reasonable size, we limit the
number of devices to 4 and consider the following two
DNNs. LeNet [30] is a 6-layer CNN for image classifi-
cation. The second DNN is a variant of RNNLM where
the number of unrolling steps for each recurrent layer is
restricted to 2. The search space for both DNNs contains
approximately 1011 strategies. We use depth-first search
to explore the search space and use A∗ [14] to prune the
search space. Finding the optimal strategies for LeNet
and RNNLM took 0.8 and 18 hours, respectively. For
both DNNs, FlexFlow finds the global optimal strategy.

Second, we test if the search algorithm returns at least a
locally optimal strategy in larger search spaces by compar-
ing the best discovered strategy with all of its neighbors.
For this experiment, we consider all six DNNs on 2, 4,
and 8 devices, where the number of neighbors remains
small enough to exhaustively enumerate them all. All the
strategies returned by FlexFlow were locally optimal.

8.5 Case Studies

We discuss the best strategies discovered by FlexFlow and
how they improve parallelization performance.

Inception-v3. Figure 13 shows the best discovered
strategy for parallelizing Inception-v3 on four P100 GPUs
on a single node, which exploits intra-operation paral-

lelism for operations on the critical path and uses a combi-
nation of intra- and inter-operation parallelism for opera-
tions on different branches. This results in a well-balanced
workload and reduces data transfers for parameter syn-
chronization. Compared to data parallelism, this strategy
reduces the parameter synchronization costs by 75% and
the per-iteration execution time by 12%.

For parallelizing the same Inception-v3 model on four
K80 GPUs with asymmetric connections between GPUs
(see Figure 6b), we observe that the best discovered strat-
egy tends to parallelize operations on adjacent GPUs with
a direct connection to reduce the communication costs.

NMT. Figure 14 shows the best discovered strategy for
parallelizing NMT on four P100 GPUs, which uses vari-
ous strategies for parallelizing different layers. We briefly
discuss the insights from this strategy. First, for a layer
with a large number of network parameters and little com-
putation (e.g., the embed layer), it is beneficial to perform
the computation on a small number of GPU devices to re-
duce parameter synchronization costs. Second, for a layer
with a large number of network parameters and a heavy
computation workload (e.g., the softmax layer), FlexFlow
uses parallelism in the channel dimension and assigns the
computation for a subset of channels to each task. This
allows each device to use a subset of the network parame-
ters, which reduces parameter synchronization costs while
maintaining load balance. Third, for multiple recurrent
layers (e.g., the LSTM and attention layers), FlexFlow
uses concurrency among different layers as well as par-
allelism within each operation to cooperatively reduce
parameter synchronization costs while balancing load.

9 Conclusion
This paper presents FlexFlow, a deep learning system
that automatically finds efficient parallelization strategies
for DNN applications. FlexFlow uses a guided random-
ized search procedure to explore the space of possible
strategies and includes an execution simulator that is an
efficient and accurate predictor of DNN performance. We
evaluate FlexFlow with six real-world DNN benchmarks
on two GPU clusters and show FlexFlow significantly
outperforms state-of-the-art parallelization approaches.
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