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Abstract
Hybrid computing systems, consisting of a CPU server cou-

pled with a Field-Programmable Gate Array (FPGA) for appli-
cation acceleration, are today a common facility in datacenters
and clouds. FPGAs can deliver tremendous improvements in
performance and energy efficiency for a range or workloads,
but development and deployment of FPGA-based applications
remains cumbersome, leading to recent work which replicates
subsets of the traditional OS execution environment (virtual
memory, processes, etc.) on the FPGA.

In this paper we ask a different question: to what extent do
traditional OS abstractions make sense in the context of an
FPGA as part of a hybrid system, particularly when taken as
a complete package, as they would be in an OS? To answer
this, we built and evaluated Coyote, an open source, portable,
configurable “shell” for FPGAs which provides a full suite of
OS abstractions, working with the host OS. Coyote supports
secure spatial and temporal multiplexing of the FPGA be-
tween tenants, virtual memory, communication, and memory
management inside a uniform execution environment. The
overhead of Coyote is small and the performance benefit is
significant, but more importantly it allows us to reflect on
whether importing OS abstractions wholesale to FPGAs is
the best way forward.

1 Introduction

Field-Programmable Gate Arrays (FPGAs) are now standard
in datacenters and cloud providers [1, 3, 12], providing more
flexibility at lower power than ASICs or GPUs for many ap-
plications (e.g. [5, 19, 25, 29, 30, 41, 53]) despite (due to their
heritage in embedded systems and prototyping) remaining
difficult to program, deploy, and securely manage. As a result,
along with much research into making FPGAs easier to pro-
gram [7,8,36,45,51,54,58], considerable recent work applied
ideas from operating systems design and implementation to
resource allocation, sharing, isolation, and management of an
FPGA-centric computer.

So far, this work has been piecemeal, focusing on a par-
ticular aspect of functionality, e.g. Feniks [63] targets FPGA
access to peripherals, Optimus [32] provides access to a host’s
virtual memory via address translation, etc. These yield sub-
stantial incremental improvements over the state of the art.

At the same time, what makes good OS design so chal-
lenging is the close interaction in the kernel between all the
functionality. Virtual memory without support for multiple
applications (multi-tenancy) or strong isolation between them
is of limited use. Virtualizing hardware devices without pro-
viding virtual addressing and creating a common execution
enviroment that abstracts the hardware leaves most of the
problem unsolved. An FPGA scheduler that cannot exploit
the ability to dynamically reconfigure parts of the chip has a
limited shelf-life, and so on.

Therefore, we step back to ask the question: to what extent
can (or should) traditional OS concepts (processes, virtual
memory, etc.) be usefully translated to an FPGA? What hap-
pens when they are? To answer this question, we need to adopt
a comprehensive, holistic approach and think about complete
functionality, rather than sticking to particular aspects of an
OS or supporting only limited FPGA features.

To this end, we have built Coyote, combining a coherent set
of OS abstractions in a single unified runtime for FPGA-based
applications. Like a microkernel, Coyote provides the core set
of essential functions on which other services can be based: a
uniform execution environment and portability layer, virtual
memory, physical memory management, communication, spa-
tial and temporal scheduling, networking, and an analog of
software processes or tasks for user logic. It achieves this with
minimal overhead (less than 15% of a commodity FPGA).
Our contributions in this paper are therefore:

1. For a range of OS abstractions, a critical assessment of
how each might map to an FPGA, in the context of its
interaction with the others,

2. An implementation of the complete ensemble in Coyote,
a configurable FPGA “OS” for hybrid compute servers.
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3. A quantitative evaluation of Coyote using both mi-
crobenchmarks and 5 real applications.

4. A qualitative discussion of the implications of the work
for future FPGA and OS designs.

We start with the basic hardware that any FPGA OS must
handle. This determines the high-level structure of Coyote.

2 Foundations

Coyote targets hybrid systems, combining a conventional
CPU with an FPGA either over a peripheral bus like PCIe,
CXL [16], CCIX [13] or OpenCAPI [49], or instead a native
coherency protocol as with Intel HARP [39] or ETH Enzian [2,
21]. Coyote runs today on PCs with Xilinx VCU118 [56],
Alveo U250 [59] and Alveo U280 [60] cards. The port to
Enzian is under way. We avoid any design decisions that
might prevent the use of modern FPGA features like dynamic
partial reconfiguration of multiple regions, or useful “hard”
on-chip functions.

This naturally splits any design into a “hardware” compo-
nent running on the FPGA and a software component running
on the host CPU as part of the OS and support libraries.

Furthermore, dynamic reconfiguration of the FPGA in-
duces a further split of the hardware component into a “static
region”, configured at boot, and a “dynamic region”, contain-
ing subregions (vFPGAs), each of which may be changed
on the fly. This split exists (often in simplified form) in all
FPGA datacenter deployments. Within and between regions,
hardware components interact via standard interconnects like
AXI [31].

2.1 The static region
The FPGA static region must contain the functionality re-
quired to reconfigure the dynamic region and communicate
with the CPU’s OS. However, its contents should not be fixed
for all time. Space (chip area, logic blocks, wires, etc.) re-
mains a scarce resource on FPGAs, and unlike OS resources
such as CPU time and virtual memory, it is hard to make it
“elastic” through virtualization. Moreover, different models
of FPGAs show very different tradeoffs. In the medium term,
it is important to make some static region components (for
example, the TCP/IP stack) optional so they can be omitted if
the space is better used for user logic.

In Coyote, the static region always contains logic to par-
tially reconfigure the dynamic region, communicate with the
host machine (an xDMA copy engine [57]), and to divide the
dynamic region into a set of virtual FPGAs (“vFPGAs”), each
of which has an interface mapped into the physical address
space of the host CPU (described below).

The static region can also contain optional logic shared
between all applications running in vFPGAs, the most basic

being memory controllers (for RAM directly connected to the
FPGA) and networking (at present, TCP and RDMA).

2.2 The dynamic region

The dynamic region is the basic mechanism for time-division
multiplexing of the FPGA resources. Modern FPGAs allow
selective portions of this region to be reconfigured indepen-
dently at any time. Most deployed systems (e.g. F1 [3] and
Intel’s HARP [39]) dedicate this region to a single application,
and reprogram it only rarely (e.g. when an associated virtual
machine on the host is booted up).

Coyote, like other recent systems [14, 17, 62, 63], provides
flexible spatial and temporal multiplexing. The dynamic re-
gion is partitioned into independent vFPGAs. Their number
is wired into the static region, which allows multiple applica-
tions to run concurrently and be switched in and out.

A novel feature of Coyote is that each vFPGA is further di-
vided into user logic and a wrapper. The former is a bitstream
entirely synthesized by a Coyote user and validated by the
system. This allows great flexibility in programming models:
Coyote applications can be written in HLS, Verilog, VHDL,
OpenCL, or some combination of these or other languages.

The wrapper is part of Coyote, and both sandboxes user
logic and provides a standard interface to the rest of the system
(in FPGA terms, partition pins are inserted by the reconfig-
uration tool locking all the boundary interface signals in the
fabric). This incurs a cost in chip area usage, but the benefit
is that Coyote pushes the “portability layer” for FPGA appli-
cations up to the language level: an application written for
Coyote can, given sufficient resources, be synthesized to run
on any Coyote FPGA. In contrast, with native FPGA develop-
ment at present code is rarely portable between device models
(or even, in some cases, revisions of the same model).

It is tempting to draw an analogy between the structure
of Coyote and a microkernel model of an OS, consisting of
the kernel (the static region), services (optional static compo-
nents), system libraries (dynamic wrappers), and applications
code (user logic). However, this would be an error. For exam-
ple, the dynamic wrappers form part of a trusted computing
base (TCB), whereas system libraries in a microkernel do not.

2.3 The software component

In a hybrid system, the host OS must clearly be aware of
the FPGA environment, and also provide suitable and safe
abstractions to user application code running on the CPU for
interacting with user logic on the FPGA.

Beyond this, however, there is a fundamental tradeoff be-
tween how much management of FPGA resources is per-
formed on the FPGA itself (by a combination of static region
logic and dynamic functionality) and how much is imple-
mented by system software on the CPU. Offloading FPGA
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Figure 1: Coyote structure

management functionality to the CPU and OS frees up valu-
able space on the FPGA, and allows much more policy flexibil-
ity than could be reasonably implemented in logic. Hovewer
a functionality that is on a critical path can lead to degraded
performance and/or loss of predictability in response time
(often a key attribute of hardware solutions). In some ways
this mirrors the traditional OS tradeoff between kernel-mode
and user-space implementation, but the contrast is more stark.

Coyote maximises the FPGA area available to user logic,
moving much functionality not on the fast path into the host
CPU’s OS. The software part of Coyote consists of a kernel
driver (currently for Linux), a runtime manager process, and
user application code.

At startup, the driver reads the configuration of the static
region from the FPGA and sets up data structures for the
set of vFPGAs to be supported. Thereafter, it is responsible
for “control plane” communication with the FPGA (such as
reconfiguring a vFPGA) and creating memory mappings for
application code to interact directly with a vFPGA. The driver
also handles dynamic memory allocation for the FPGA, and
services TLB misses on the FPGA (see below).

Figure 1 shows the components of Coyote. The host CPU
is connected to the PCIe core at top left.

3 OS abstractions on an FPGA

In this section, for each considered OS abstraction we first
review its role in a conventional OS for a homogeneous mul-
ticore machine. We then discuss what is fundamentally dif-

ferent in an FPGA environment, and the impact this has on
design decisions when creating an analog of the abstraction
on the FPGA. Following this, we discuss our own implemen-
tation, and discuss our experience with building and using the
approach. A quantitative evaluation of the whole of Coyote is
given in Section 4.

3.1 Processes, tasks, and threads
The basic abstractions most OSes provide for multiplexing
and virtualizing processor resources are based on processes,
threads, and/or tasks. Definitions vary from OS to OS, but a
thread is generally an open-ended execution of a sequence of
instructions on a single virtual processor, a task is a unit of
computational work to be dispatched to a CPU core, and a
process is some combination of threads sharing an address
space, to which CPU resources are allocated.

The hardware mechanisms underlying these abstractions
are basically the ability of the processor to context switch,
and be preempted by an interrupt or trap.

Such abstractions can be readily adapted to architectures
like GPUs, which retain the notion of a hardware thread, albeit
with a very different degree of parallelism. GPU drivers for
modern OSes attempt to extend the process abstraction of
the host CPU to the GPU, although in a somewhat limited
form [9], and this is the foundation for programming models
like CUDA and OpenCL. The task abstraction has also been
successfully deployed on GPUs [44].

What’s different on an FPGA? Resource multiplexing
on FPGAs is fundamentally different, since there is no hard-
ware corresponding to a “processor”, “core”, or “hardware
thread” on which to base an abstraction aimed at multiplexing
processing resources. Instead, the basic mechanisms available
on the FPGA for multiplexing compute resources between
principals are partial reconfiguration of areas of the FPGA
logic at runtime, and spatial partitioning of application logic
across different areas of the chip.

While it is true that a popular programming technique for
FPGAs involves implementing a custom application-specific
processor (typically some VLIW-based architecture), this is
not intended to be multiplexed or scheduled. The analogue
of these custom cores in the software world is more that of
a library or bytecode interpreter that lives entirely within the
process abstraction.

The trivial approach here is to dedicate the entire FPGA
to a single application, and indeed in embedded systems this
is the norm. A more flexible approach allows more than one
application to use the FPGA at a time. The static region of the
FPGA contains enough logic to swap one application out for
another, but otherwise the chip is dedicated to an application
for long periods. This is the model adopted by Amazon F1
and, indeed, almost all other commerically deployed systems.

An alternative proposed in research systems (e.g. [32, 62,
63] and others) is to partition the FPGA resources statically
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between applications. Spatial partitioning also raises further
questions. For example, when multiple applications share the
FPGA, should they be allowed to communicate, as processes
do with IPC, and if so, how?

Coyote approach: Coyote combines both approaches, pro-
viding a cooperative multitasking abstraction of a set of virtual
FPGAs, each of which is timeshared between applications. A
Coyote platform is configured at boot time with a fixed num-
ber (e.g. 2-8) of vFPGAs, which are a spatial partition of the
dynamic region of the chip. Each of these regions are, for the
purposes of executing user logic, equivalent (much like cores
in a symmetric multiprocessor), and are time-shared between
applications. Ideally, a single application bitstream could be
loaded into any available “slot” to be executed. Although
some research in this direction exists [20], this is difficult
with current levels of heterogeneity in FPGAs, which means
that (at present) each application has to be (automatically) syn-
thesized in advance for each vFPGA slot, akin to compiling
“fat binaries” for multiple architectures. We discuss specific
spatial and temporal scheduling questions below, along with
the execution environment provided to user logic.

Discussion: A scheme with this generality requires care to
implement. When timesharing vFPGAs, it is important that
the context switch overhead does not outweigh the perfor-
mance benefits of using a circuit in the first place. Dynamic
partial reconfiguration of an FPGA is a relatively slow pro-
cess and may remain so for the foreseeable future. In 4.3 we
measure this cost.

Moreover, the logic required to implement multiple vFP-
GAs, and allow them to communicate and share services in
the static region of the chip, must come with an acceptably-
small cost in chip resources. We evaluate this in Section 4.2.
So far our experience has been good: we can comfortably
run multiple useful applications on a single FPGA today, and
hardware trends are in our favour as the parts become larger.

3.2 Execution environment

The process abstraction also serves the purpose of providing
a standard execution environment for a program. A program
compiled to run in a process can, in principle, execute in
any process on any machine implementing the same process
environment. For example, in Unix, a process’s execution
environment consists of a virtual address space, one or more
threads, a set of file descriptors, the system call interface, etc.

What’s different on an FPGA? To date, there are almost
no attempts to define a process-like execution environment
for an FPGA. Most FPGA application development targets a
specific model of FPGA. Porting the same logic to a different
chip is often a non-trivial programming problem.

The heterogeneous nature of hybrid platforms complicates
this question further. In addition to the environment in which
user logic executes, a process abstraction must also address
how software processes and FPGA-based logic “processes”
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interact across the hardware/software interface.
In GPUs, programming models like OpenCL and CUDA

are the solution. Portability is raised to the compiler, and the
execution environment is defined by the language in which
the GPU code is written. This works well for GPUs because
they function as pure accelerators. The same model has been
implemented for FPGAs [51, 58].

However, hybrid FPGA-based systems are not pure com-
putational devices - for example, they perform I/O through
network and storage interfaces; indeed, this ability to interface
externally is a major selling point. Rolling this functionality
entirely into a compiler has not worked in conventional ma-
chines, and is unlikely to do so here. Instead, runtime inter-
faces are needed. Perhaps the closest GPU analogy here is
ptasks [44], which present the GPU as a task-based runtime
as opposed to a language-level OpenCL interpreter.

Coyote approach: Coyote defines a single user logic in-
terface (ULI) for every application, which is the hardware
analog of an ABI, and is illustrated in Figure 2. It uses the
streaming AXI4 protocol for transferring bulk data between
the host, memory stack, other services like the network stack,
and the user logic. The same interface is used for inter-region
communication, with a control plane over an AXI4-light bus.

This interface is provided by the dynamic wrapper in each
vFPGA, and effectively sandboxes the user logic while pro-
viding communication with system services and memory –
effectively combining functions of an address space and sys-
tem call ABI in a software process.

Access to the ULI interface is exposed to user logic at a
fairly low level, allowing read and write descriptors to be
generated directly from the user logic in the FPGA fabric,
and host software access (including by high-bandwidth SIMD
instructions) to be routed directly to the user logic.

User software on the CPU interacts with the FPGA by
creating a job object, essentially a closure consisting of user
logic and other parameters and data. This is passed to the
runtime manager for installation on the FPGA.

Once functional, the user logic exposes a register interface
in physical memory to the CPU, and the runtime manager
maps this into the calling process’ address space. Thereafter,
the interraction between application software and user logic
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completely bypasses the kernel and runtime manager.
Discussion: The ULI in Coyote incurs minimal overhead,

but delivers considerable benefits, some of which might be
surprising to those familiar with software development. It en-
ables an approach analogous to microkernels, with common
services provided to multiple vFPGAs over the AXI inter-
connect. For example, we ported publicly-available TCP and
RoCE stacks [46, 48] to Coyote, and they became immedi-
ately usable to our existing applications without the extensive
hardware-specific modifications usually required in FPGA
development.

As with conventional OSes, the Coyote execution envi-
ronment also provides a way to deal with the evolution of
hardware. The FPGA design space is changing rapidly. To
take one example: in most FPGAs deployed in data centers
today, the memory controllers and network stack (aside from
PHY and MAC) are still instantiated as reconfigurable logic.
However, both are becoming an almost universal requirement
for cloud FPGA applications, which makes a strong case for
building “hard” IP into future FPGAs to provide this func-
tionality with less penalty in chip area - indeed, the latest
design of Microsoft’s Catapult platform offloads the network
stack to an ASIC (albeit off-chip). Intel’s Embedded Multi-
Die Interconnect Bridge (EMIB) is intended to extend FPGAs
with new hardware, for example machine learning accelera-
tors [37]. Recent Xilinx Versal cards also provide numerous
off-chip hardware functions.

These trends make it even more difficult to achieve porta-
bility without a uniform execution environment like Coyote’s
to abstract these features behind a clean interface.

3.3 Scheduling
Scheduling on conventional machines is a complex topic with
a history older than computers themselves. In this paper we
focus on factors affecting scheduling mechanisms rather than
specific policies.

What’s different on an FPGA? CPU scheduling can
be preemptive or non-preemtive. Preemptive scheduling on
CPUs requires a mechanism to interrupt a running process,
save its state, and context switch to another, without any co-
operation from the process or user program itself.

On an FPGA, such interrupt machanisms are not supported
by any of the mainstream toolchains. Some progress in this
direction has been made in academia [27], but with signifi-
cant performance penalties and implementation difficulties.
Furthermore, the “state” of executing user logic potentially in-
cludes any stateful logic block (block RAM, flip-flops, DSPs)
in the region of the FPGA used by the application, making
the state capture all the more complex. For this reason, mech-
anisms for preempting arbitrary FPGA applications so that
they can be reliably resumed later are not clear.

Instead, existing approaches to timeshare an FPGA avoid
preemption [50] and rely on two techniques. The first is a
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Figure 3: Coyote scheduling

“task-based” approach where work units are submitted to the
FPGA and run to completion much like Ptasks [44]. Secondly,
as a last resort a badly-behaved piece of user logic can simply
be deconfigured by the OS, in a manner analogous to killing a
misbehaving process. The scheduling problem then becomes
one of dispatching tasks to the FPGA.

The key quantitative difference with FPGA scheduling
is that context switch time is much higher: reconfiguring a
dynamic region can take many milliseconds. Moreover, only
one region of the FPGA can be reconfigured at a time. If not
addressed, these limitations can lead to unacceptably high
scheduling overhead.

Coyote approach: Coyote adopts the task-based tech-
nique, with tasks being described by job objects. Tasks are not
scheduled by the FPGA itself, instead the runtime manager
on the host CPU schedules them spatially (across vFPGAs)
and temporally (by reconfiguring a vFPGA if required, and
serializing such reconfigurations).

The current version of Coyote adopts a modified priority-
based queue scheme for tasks (Figure 3). Application soft-
ware submits a task to a per-application queue in the runtime
monitor. These are serviced in a round-robin fashion, and
dispatched to a priority queue for one of the fixed number of
vFPGA instances. Each of these queues is sorted first by pri-
ority and, then, by the bitstream image that the task requires.

This heuristic provides a degree of fairness between ap-
plications (though it could certainly be improved with better
protection against starvation in a few pathological cases),
but more importantly groups together tasks that can run in
a sequence without intervening reconfigurations of their vF-
PGA. This approximates some of the benefits of Optimus [32],
which employs a more static assignment of logic to vFPGAs
but shares this between applications. Note that it also makes
the scheduler non-work-conserving.

Discussion: For the 5 applications we evaluate in Section 4,
the reduction in the number of required reconfigurations sub-
stantially improves efficiency, to the extent that, with current
hardware, it probably dominates other aspects of the schedul-
ing algorithm. However, we feel there is still important work
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to be done in improving fairness, starvation-freedom, and
predictability of the scheduler.

Coyote deliberately avoids any question of preempting ap-
plications running in vFPGAs, except in extremis to “kill”
badly behaving user logic. This decision is worth discussing
in more detail, since other approaches [26,32] provide explicit
preemption interfaces. Applications can use these interfaces
to implement user logic to save and restore their state in re-
sponse to a preemption request from the scheduler.

The first reason for this decision is from an OS designer’s
perspective: the classical OS design principles adopted in Coy-
ote strongly argue against this approach to preemption. Tradi-
tionally, user applications are not trusted to behave nicely by
the OS, and so implementations take great care to ensure that
preeemption never requires cooperation from the application
– even in cases where it is explicitly visible to user threads, as
in Psyche [33]. So-called “cooperative multi-tasking systems”
(for example, early versions of the Apple Macintosh OS) do
require application cooperation for context switching, but are
generally not preemptive and, as history shows, are invariably
supplanted by preemptive scheduling that does not require
participation by the application.

The second reason is that the nature of “services” (e.g.
networking) on an FPGA is different from that on a CPU. FP-
GAs emphasize spatial multiplexing and extreme concurrency.
This means that services like the network stack (Section 3.6)
and physical memory management (Section 3.5) do not need
to be scheduled in Coyote: they are separate circuits and so
inherently run all the time. A user-supplied preemption im-
plementation may appear sufficient where these OS facilities
are absent, but their presence means that user-implemented
preemption has to also save and restore state (such as network
flows) in each of these services. This capture of system-wide
state cannot yet be done efficiently in current FPGAs.

3.4 Virtual memory

In a conventional OS, virtual memory provides a potentially
unlimited number of “virtual address spaces” to software pro-
cesses. By default, a virtual address space provides a sandbox
of private memory, but segments of memory can be selectively
shared between address spaces by the OS.

Virtual address spaces solve several crucial problems in
computer systems: code and data does not need to be relocated
at runtime, since it can be compiled and linked to run at a
fixed address. Demand paging to a disk or SSD allows the
amount of memory seemingly available to all applications to
exceed the total real memory in the system.

Fragmentation of physical memory is avoided at anything
coarser than page granularity. Physical locations for data can
be chosen carefully to provide cache-coloring transparently
to user code. Accesses to memory regions can be tracked
via a “protect-and-trap” technique, with applications ranging
from garbage collection [4], copy-on-write, and transaction

management [35] to dynamic binary translation [10].
Hardware support for the abstraction of virtual memory

is traditionally provided by the MMU, by way of three key
functions: address translation from a virtual to a physical
address space, protection of memory pages, and a mechanism
to trap to the OS on certain memory accesses (i.e. a page or
protection fault).

What’s different on an FPGA? Some uses of virtual
memory do not make sense on an FPGA, such as trapping on
particular instructions or memory addresses. However, others
(demand paging, relocation, etc.) are highly relevant.

Existing approaches to programming FPGAs generally ig-
nore virtual memory, or handle address translation solely in
the host OS kernel [11,14,17,26,27,39,62,63]. Pinned physi-
cal buffers are allocated and shared between FPGA user logic
and software, which (when the data is not simply copied en
masse between host memory and the FPGA) entails either
the use of offsets to implement pointer-rich data structures,
or cumbersome “pointer swizzling” when passing ownership
of regions between devices. In both cases, one cannot simply
pass a pointer from software to user logic without some me-
diation, typically by the OS kernel, or a runtime specific to a
programming model like OpenCL [55].

One approach to accessing host virtual memory from the
FPGA is via the host platform’s IOMMU. However, IOM-
MUs are not well-suited to a dynamic set of FPGA appli-
cations, even the subset that only use PCIe as an intercon-
nect. Optimus [32] has a good explanation of the limitations
of IOMMUs, and employs an ingenious “page table slicing”
technique to work around them. Other recent work also im-
plements some form of translation on the FPGA from user
logic to host-physical addresses [6, 15, 42, 52], .

These approaches, however, are limited to one special case:
user logic accessing data on the host CPU memory in a soft-
ware virtual address space. Modern FPGA platforms, however,
have additional extensive memory closely coupled to the chip
(for example, Enzian’s FPGA has 512 GiB of DDR4), and also
devices (such as network or storage controllers). To interact
correctly with other OS abstractions (such as device virtual-
ization, isolation, or even simply access to FPGA resources
from the CPU), a virtual memory abstraction for multi-tenant
FPGAs must thus be extended to these resources as well. It
must enable safe and securely access to memory both on the
FPGA itself, and on memory and devices directly attached to
the FPGA, from user logic and software.

An approach satisfying these requirements is present in
modern GPUs [38] where a unified memory abstraction of
GPU and host memory is implemented. This abstraction pro-
vides primarily increased programmability which removes the
need for explicit memory management and data movement
from the software side.

FPGAs also differ fundamentally from GPUs or other ac-
celerators in that they are reconfigurable. In a CPU or, indeed,
a conventional IOMMU or SMMU, parameters such as TLB
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size, associativity, coverage, etc. are fixed when the chip is
laid out. They represent a careful, “one-size-fits-all” compro-
mise intended to run most workloads reasonably well.

In contrast, with an FPGA TLB parameters can be changed
on the fly to handle specific workloads more efficiently. More-
over, many accelerator workloads which deal with large data
volumes benefit greatly from larger page sizes – this motivates
Optimus [32] to use 2MiB pages exclusively, for example.
These factors, combined with the lower clock speed at which
FPGAs run (typically about 10% of CPU clock speed), make
a software loaded TLB more attractive as a design option.

Coyote approach: Rather than relying on a single shared
FPGA MMU, and/or relying on an IOMMU, Coyote includes
TLBs in the wrapper of each vFPGA. This not only allows
TLB dimensions to be decided based on the application, but
also provides sandboxing of user logic regardless of whether it
is accessing off-chip DRAM attached to the FPGA’s memory
controllers, or host CPU DRAM using the xDMA engines
in the static region. It also makes floorplanning and routing
easier on the chip by reducing fanout.

Moreover, the TLBs are positioned in each dynamic re-
gion so as to mediate all accesses to FPGA-attached devices
and RAM, and the entire host CPU’s physical address space,
something not possible with a conventional IOMMU.

The operation of TLBs in Coyote is best described in two
parts: first, the underlying mechanism, and second, the differ-
ent memory usage models it supports.

Mechanism: Coyote actually provides two TLBs per vF-
PGA, one for 4KiB pages and one for 2MiB large pages. The
TLBs are fairly straightforward caches (see Figure 4); asso-
ciativity and number of sets are determined at build time for
the application. A TLB miss causes an interrupt to the host
CPU, whereupon the driver identifies the faulting vFPGA and
either loads the TLB with a valid mapping or signals a page
fault, which would be handled in software on the host.

All accesses to both FPGA and host DRAM from user logic
use the same unified TLB interface. User logic can therefore
access any host memory, if the TLB allows. Accesses to host
and FPGA memory use different paths to proceed in parallel.

Meanwhile, on the host side, the CPU’s physical address
space contains a region for each vFPGA, each of which is
further subdivided into three parts:

1. The TLB contents and other privileged configuration
values. This subregion may only be mapped by the privi-
leged Coyote device driver.

2. Dynamic wrapper registers accessible to user software,
e.g. for setting up DMA copies.

3. Direct access to user logic. CPU-initiated accesses are
presented to user logic as AXI4 transactions (see Fig-
ure 2) to be interpreted as the user logic sees fit.

Usage models: The most common way of using this fa-
cility is to provide GPU-style “Unified Memory”, which is
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Figure 4: Coyote per-application TLBs

essentially a form of local distributed shared virtual memory:
pages are copied (faulted in) on demand between FPGA and
host memory via DMA with coherence managed by a combi-
nation of driver software and dedicated “page fault” units in
the secure wrappers. Coyote can thus handle multiple appli-
cation contexts maintaining different shared virtual address
spaces. It is the job of the software component of Coyote to
ensure that address mappings are consistent between the vF-
PGA TLBs and the virtual address space of the corresponding
software processes. Though there is no fundamental need for
them to be so, it allows direct sharing of pointer-rich data
structures between application software and user logic.

Alternatively, TLB entries can indicate that, when a cor-
responding virtual address is requested, the physical access
is directly routed to either host or FPGA memory without
any copying of pages. For efficient random access (such as
pointer-chasing) this may be much more faster to program
and execute than “unified memory”.

Finally, it is also possible to route CPU accesses to ad-
dresses on the FPGA back through the vFPGA wrapper’s
TLBs and into FPGA (or, indeed, host) memory. While quite
slow on PCIe-based systems, it might be an attractive option
on a fully-coherent non-PCIe system like Enzian.

Discussion: As we show in Section 4, the TLBs impose
very little space overhead in a vFPGA, and deliver in return
considerable simplicity in programming applications.

The partitioning of TLB functionality across vFPGAs
brings a degree of performance isolation to vFPGA appli-
cations: one vFPGA cannot pollute the TLB contents of an-
other region and thereby impact performance, an important
consideration for a multi-tenant environment.

Note also that the area occupied by TLBs can be traded
off against performance in an application-specific manner.
This would not be possible with conventional IOMMUs sit-
uated on the PCIe bus, and would be hard to achieve with a
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single IOMMU shared between applications. Partly as a con-
sequence, we have yet to see serious performance overheads
due to the software-loaded TLBs.

3.5 Memory management
In addition to virtual memory, a traditional OS provides facili-
ties for managing physical memory. As hardware has become
more complex, this has become more important for perfor-
mance. E.g. an application might request regions of contigu-
ous RAM to optimize sequential access and/or TLB coverage
via superpages, or memory on specific NUMA nodes, explic-
itly (e.g. via libnuma on Linux) or implicitly (e.g. using
Linux’ “first-touch” allocation policy).

These abstractions more concern performance than correct-
ness. However, in the case of peripherals and heterogeneous
accelerators it may be a requirement for software to work. A
CUDA application may need to allocate GDDR memory on
a GPU which is accessible (over PCIe) to CPU code. Alter-
natively, a device might only be able to DMA to and from a
subset of the CPU-attached physical RAM.

In a software OS, however, there is a single mechanism
available to allocate memory with the right characteristics:
choosing an appropriate range of physical addresses. The
physical address functions as a proxy for all kinds of features
of the hardware interconnect, memory controllers, DMA ca-
pabilities, and (in the case of cache coloring) the processor’s
cache architecture and placement policies.

What’s different on an FPGA? Since FPGAs are much
closer to the hardware, the situation is very different. Code
running on FPGAs can access memory controllers directly.
Data paths are not limited in size to cache lines, machine
words, or MMU pages. SDAccel [58] exposes memory con-
trollers explicitly to the programmer, providing flexibility but
sacrificing simplicity and portability across FPGA devices.

The memory potentially visible to FPGA user logic is much
more diverse than in software (and there are no caches). Block
RAM (BRAM) is fast but scarce, DRAM is slower but there
is typically much more of it, many systems have extensive off-
chip DRAM available, and newer FPGAs incorporate High-
Bandwidth Memory (HBM) as well.

Moreover, as with servicing TLB misses, it may be useful to
offload the dynamic allocation of FPGA memory to software,
although hardware allocators have been developed [61].

Coyote approach: Allocation of physical memory both
within and between vFPGAs in Coyote is handled by software,
in the kernel driver, which also takes care of creating virtual
memory mappings both for the user logic and application
CPU code. A variety of physical memory types can be used
(off-chip DRAM, host DRAM, HBM, etc.).

Accessing memory is similarly different. Whereas software
deals with register loads and stores or cacheline fills and write-
backs, any memory access in FPGA user logic is inherently,
and explicitly, a copy operation from one location to another.
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Figure 5: Read/Write engine

On current PCIe-based systems, user logic can access the
entire host CPU’s physical address space (albeit subject to
memory protection) by transparently using xDMA copy en-
gines. The complexity of routing memory accesses originating
from both user logic and host software, and destined for host
memory or FPGA resources, is handled by a read/write en-
gine in each vFPGA wrapper (Figure 5), which provides this
flexibility in access. Requests are submitted to the read/write
engine using base/length descriptors; accesses from host soft-
ware to FPGA memory are translated into these descriptors
by the interface logic whereas the user logic issues them di-
rectly. This results in low overhead operations in the ULI
entirely on virtual addresses. On fully coherent systems like
Enzian, the read/write engines would be replaced with the in-
terface Coyote provides to the CPU’s native cache-coherence
protocol.

In contrast to approaches like SDAccel (but more in line
with a software environment), Coyote hides the presence of
individual on-board DRAM controllers from user logic. On-
board DRAM is the most commonly used way to hold bulk
data in most FPGA acceleration algorithms, since it is higher
capacity than BRAM. Coyote aims simply to maximize the
bandwidth of bulk sequential access to this resource for user
logic running in a vFPGA.

Coyote stripes DRAM access across all available con-
trollers via careful allocation of pages. Coupled DRAM is al-
located in 2MiB superpages. Each page is then striped across
channels – e.g. if the FPGA has two physical DRAM channels,
the first 1MiB of each page will access one DRAM channel,
and the second half will use the second channel. This permits
bandwidth optimization when performing rapid accesses with
multiple channels present, and (as we show in Section 4.5)
results in considerable performance gains over the naive ap-
proach. Accesses from different vFPGAs are still interleaved
at each memory controller, as shown in Figure 6.

998    14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association



Crossbar

DMA
Read

Channel

DMA
Write

Channel

Agg.
FSM

Page: 1 Chan: 1
Page: 2 Chan: 1
Page: 3 Chan: 1

Page: 1 Chan: 2
Page: 2 Chan: 2
Page: 3 Chan: 2

DMA
Read

Channel

DMA
Write

Channel

Agg.
FSM

Pg: 2 Ch: 1
Pg: 1 Ch: 2
Pg: 1 Ch: 1

Pg: 2 Ch: 2

XDMA
Host 

access

DDR channel 1
controller

DDR channel 2
controller

Ch: 1 Ch: 2

Aggregated

Dynamic 
region 1 Dynamic region 2

Pg: 3 Ch: 2
Pg: 3 Ch: 1

Ch: 1 Ch: 2

Aggregated

Descriptors
(from 

engine)

Descriptors
(from 

engine)

User logic 1 User logic 2

AXI4
stream

AXI4
stream

AXI4
stream

AXI4
stream

AXI4 AXI4 AXI4

AXI4AXI4 AXI4

Dynamic 
region 2

allocated 
pages

Dynamic 
region 1

allocated 
pages

Figure 6: Multi-channel striping

Discussion: User logic is rarely as “memory-allocation
intensive” as software, and so the kernel memory allocation
code is rarely on the critical path.

By abstracting away on-chip DRAM controllers, Coyote
makes a tradeoff in favour of portability and ease of program-
ming, which we argue (based on our experiments) is appropri-
ate. Moreover, Coyote applications can directly run on future
FPGA designs which entirely offload memory controllers to
dedicated hardware (as we discussed in Section 3.2).

In this context, striping provides more than just faster se-
quential access: it is vital for abstracting and sharing memory
controllers since it allows the DRAM controllers to enforce
fair sharing of bandwidth between vFPGAs.

3.6 IPC, I/O, and other services

A traditional OS provides a number of abstractions beyond
those we have covered here. The most fundamental, at the
heart even of microkernel architectures, is inter-process com-
munication (IPC). We have already described how Coyote pro-
vides communication between vFPGAs and CPU-based soft-
ware processes, but it also allows optional hardware queues
between vFPGAs by analogy with IPC channels, pipes, etc.,
in a manner reminiscent of Centaur [42]. This allows users
e.g. to chain dataflow operators running in different vFPGAs
together while preserving the isolation between them.

While inter-vFPGA queues (and shared locations in FPGA
virtual memory) can be used for inter-application commu-

nication, we find they are rarely used as such. As with con-
tainers, in our experience inter-vFPGA communication, when
it happens at all, is coarse-grained and benefits from being
independent of whether the vFPGAs share the same FPGA.

Instead, the main use for such queues is communication
with services provided by Coyote.

For example, Coyote provides an optional, but fully inte-
grated, high-performance multi-tenant network stack based
on our open-source TCP/IP and RDMA engine for FP-
GAs [46,47]. Like the memory stack described in Section 3.5,
the network stack abstracts away the details of the physical
network interfaces present and exposes a portable, standard
interface, and can be shared between all vFPGAs present.

Further services can be similarly implemented and config-
ured into the static region at startup, for example a storage
stack (perhaps driving directly attached Flash memory). The
microkernel analogy applies here: Coyote provides a basic
framework where such services can be added in the future
based on use-case requirements.

Unlike in a software-based OS, Coyote “services” like the
network stacks do not need to be scheduled, since they are
always present on the FPGA – the FPGA is being spatially
rather than temporally shared between services and user logic.

4 Evaluation

We focus on the question of whether the qualitative benefits
of using Coyote’s OS-style abstractions (scheduling, virtual
memory, etc.) incur an acceptable quantitative cost in perfor-
mance or efficiency. We look at overhead and space costs, as
well as fairness in sharing resources, and the benefits of some
of the optimizations in Section 3.

The hardware used for the results we report on here is a
Xilinx VCU118 board [56] with an Ultrascale+ VU9P FPGA,
attached to a host PC via PCIe x16. This interface provides
a maximum theoretical bidirectional bandwidth of 16GiB/s.
The board has 2 external DDR4 banks connected to the FPGA.
Each DDR channel has a soft core DRAM controller instan-
tiated in the FPGA fabric providing a total theoretical band-
width of 18GiB/s. The host PC is a quad-core Intel i5-4590 at
3.3 GHz with 8GiB of RAM running at 1600MHz.

Unless stated otherwise, the system frequency used on the
FPGA is 250 MHz. While each Coyote vFPGA has a separate
PLL-generated clock, all the experiments reported here used
the same frequency for the vFPGAs.

4.1 Macro-benchmark: decision trees
We first compare the performance of a complete, mature ap-
plication running on Coyote with that obtained on Amazon
F1 instances with the Xilinx SDAccel programming frame-
work [58] and the Intel HARP environment [39]. It is hard to
draw detailed conclusions from such a coarse-grained compar-
ison, but we aim to show that (1) Coyote is a viable platform
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Figure 7: Performance of decision trees.

for real applications, and (2) the portability and programming
features of Coyote come with negligible performance cost.
The application is an open-source implementation [40, 41]
of Gradient Boosting Decision Trees [34], focussing here
exclusively on inference over decision tree ensembles.

Decision trees are a popular form of supervised machine
learning for widely used tasks like classification and regres-
sion. They are constructed by recursively splitting the data
into multiple groups. Using a cost function splits are evalu-
ated and a greedy algorithm decides which split is the best
candidate. Recursive splitting terminates at a pre-determined
tree depth to prevent overfitting.

To do inference on the FPGA, the tree model is first loaded
into FPGA on-chip memory. Data is then fetched from the
host, inference performed, and the results copied back to host
memory. All three phases are overlapped, allowing computa-
tion latency to be hidden behind memory operations.

We compare inference throughput (scored tuples per sec-
ond) over Coyote with the same application on F1, and with
a port running on Intel’s hybrid CPU-FPGA HARP v2 plat-
form. The latter is a rather different platform and the FPGA
is clocked at 200MHz instead of 250MHz. Since F1 targets
OpenCL applications, the SDAccel port employs a strict GPU-
based compute model which incurs high data transfer over-
head. In all cases, we measure throughput with both one and
two instances of the application running on the FPGA with
the data size of 4k tuples. On all platforms, the inference en-
gine is compute-bound and requires only 4 GiB/s of memory
bandwidth, allowing two instances to operate at full capacity.

The results are shown in Figure 7. Coyote provides com-
parable or better performance to that of the two commercial
baselines. In the case of F1, this is despite Coyote providing
portability and supporting multiple vFPGAs (SDAccel only
allows a single dynamic region on the FPGA). True com-
parison with HARP is more tentative, given the lower clock
frequency and very different hardware.

Nevertheless, we can conclude that, at the very least, there
is no performance penalty in using Coyote in this case, and
benefiting from the qualitative value it brings.

# vFPGAs Stacks LUTs BRAM Regs
1 7 4% 4% 2%
2 7 5% 5% 3%
4 7 6% 7% 4%
1 X 9% 10% 6%
2 X 11% 12% 7%
4 X 14% 14% 9%

Table 1: Resource overhead
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4.2 Space overhead

Raw performance is not the only consideration when com-
paring FPGA implementations, however. The space overhead
(more precisely, the various resources on the chip used for the
framework) can be just as important.

In this regard, Coyote (or any such set of abstractions)
is strictly worse than a custom, native implementation of
an application that takes over the whole FPGA, just as a
bare-metal program is likely to use fewer resources than one
running on top of Linux or Windows.

The space overhead of the framework for varying numbers
of virtual FPGA regions and configurations with and without
memory and network stacks are shown in Table 1. We give
figures for the principal logic resources on the FPGA: lookup
tables (LUTs), block RAM (BRAM), and registers (Regs).

On the VU9P, Coyote incurs a base overhead of 2-4%,
increasing by < 1% for each additional vFPGA. Adding net-
work and memory stacks roughly doubles this, incurring at
most 14% for a full-featured Coyote install with 4 vFPGAs.

Larger future FPGAs and migration of often-used function-
ality into hard IP are likely to reduce this overhead still further.
We therefore consider this to be a modest penalty in return
for the benefits Coyote offers.

4.3 Micro-benchmark: context switching

We next measure the performance penalty in context switch-
ing a vFPGA from one application to another.
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Partial reconfiguration is still relatively slow on FPGAs,
despite recent improvements. Figure 8 shows partial recon-
figuration latency of the Xilinx VU9P as a function of the
chip area to be reconfigured; Coyote with 4 vFPGAs would
correspond to roughly 20%, or 20ms, per vFPGA.

We note that achieving even this performance is non-trivial.
Coyote’s implementation uses a fast data stream to the ICAP
(the FPGA unit handling partial reconfiguration) which can
saturate its bandwidth of about 800MiB/s. In contrast, SDAc-
cel achieves a mere 19MiB/s over a slow AXI4-Lite link.

As mentioned in Section 3.3, this overhead can be reduced
substantially by sharing the same vFPGA logic between suc-
cessive tasks targeting the same partial bitstream (compute
operator). We illustrate this with a simple example by schedul-
ing queues of tasks from the four applications used in Sec-
tion 4.4, all with small transfers of 4KiB each and all with the
same priority. We configure Coyote here with 3 vFPGAs.

We dispatch jobs in three ways: no-sched is round-robin
in both queues and vFPGAs. This causes a reconfiguration
for each job and is the worst-case scenario. rand picks the
next job from a random queue each time, and so has a 1-in-3
chance of needed a reconfiguration, and sched uses Coyote’s
heuristic of grouping jobs which share the same user logic.

Figure 9 shows total turnaround time for 10, 50, and 100
jobs of each type. Unsurprisingly, minimizing the number
of partial reconfigurations has a dominating effect on total
system throughput. Clearly there is room here for much more
sophisticated job scheduling, beyond the scope of this paper.

4.4 Resource sharing

We now evaluate how the OS-like features of Coyote can
provide fair sharing of resources across multiple vFPGAs
simultaneously. In cloud deployments, stable and predictable
distribution of resources is a key requirement.

We run four different applications on Coyote: AES en-
cryption, sha256 hash computation, HyperLogLog multiset
cardinality estimation [18, 28] and k-means calculation [22].
In each experiment we run an application with one or more

simultaneous vFPGA instances at a time. All tests except the
k-means are using the host memory and direct streaming. Due
to the iterative nature, the k-means utilizes accesses to the
local FPGA memory.

We measure per-application round-trip throughput vs. trans-
fer size, including the transfer of the plain data to the FPGA
user logic, pipeline computation, and simultaneous transfer of
the computed results back to the memory. We use hardware
counters in the FPGA fabric and so incur no overhead.

When multiple applications are running concurrently, we
also calculate mean absolute deviation (MAD) of the in-
stances from the average performance results, to give a quan-
titative measure of (un)fairness in resource allocation.

Results are shown in Figure 10. sha256 (Figure 10.a) is
compute bound, and performance scales perfectly as long as
all the vFPGAs fit in the FPGA.

More interesting is AES (Figure 10.b) which is memory-
bound. Here multiple AES vFPGAs are competing for PCIe
bandwidth, which is saturated in all cases due to the AES
implementation being heavily pipelined. We observe that,
firstly, throughput of an AES instance is inversely proportional
to the number of peers in the system, showing that the scarce
resource of PCIe bandwidth is being shared between them,
and also the MAD is very low compared with total bandwidth,
suggesting that sharing is fair.

The HyperLogLog implementation uses 16 parallel
pipelines that are able to compute on a single cache-line at a
time. The module is thus able to sustain processing at line rate
for larger transfers (as are mostly present during cardinality
estimation). For smaller transfers processing latency is the
domineering factor. The results are shown in the Figure 10.c.

The final results (Figure 10.d) show the throughput of the
k-means clustering operator during the single computation
iteration. This is an iterative algorithm, where data is first
offloaded from the host to the local FPGA memory. The data is
then streamed to the user logic in each iteration and dispatched
to 16 parallel pipelines on the FPGA to compute centroids,
the results of which are then transferred back.

In summary, these results validate our goals of sharing
scarce bandwidth on the FPGA between multiple tenants.

4.5 Striping
We evaluate the impact of Coyote hiding individual DRAM
channels behind a single abstraction that stripes each 2MiB
page across all channels on the FPGA for portability.

The benchmark is a simple DRAM to DRAM copy, im-
plemented entirely on the FPGA and measuring throughput
for transfers ranging from 4KiB to 1MiB. We measure band-
width for three scenarios. First, 1-channel copies memory
using on a single channel, and is the baseline for performance.
Second, 2-channel reads from one channel and writes to an-
other. This is the best case and requires knowledge of all the
channels in the FPGA. It could be achieved in, for example,
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Figure 10: Performance benchmarks for example applications running in Coyote showing fair sharing of the bandwidth.
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Figure 11: Striping performance.

SDAccel by explicit placement of data on the channels and
careful FPGA-specific code. Finally, striping shows Coy-
ote’s performance when oblivious to channels and placement,
and each data page is striped across channels.

Figure 11 shows the results. For small transfers, setup costs
dominate, but a single channel becomes saturated at 16KiB
and two channels at about 128KiB. Coyote incurs an overhead
of about 10%, which is competitive with many cases of hand-
optimized vs. compiler generated software code, and leads

us to conclude that abstracting the DRAM controllers is a
worthwhile trade-off for performance isolation and portability.

4.6 Demand paging

GPU-style “unified memory” implements a form of dis-
tributed shared virtual memory between the host and FPGA,
largely abstracting memory management and explicit data
movement from the users. When a vFPGAs tries to access
virtual locations on the local FPGA memory which are not
present in the physical memory, a page fault is generated and
the driver initiates a copy from host to FPGA memory, then
adjusts page tables on both sides, before signalling the vFPGA
that it can proceed.

Without this model, explicit copying of data would be re-
quired, as illustrated by this pseudocode:
void* host_d = malloc(size);
void* fpga_d = getFpgaMem(size);
offloadMemCpy(host_d, fpga_d, size);
executeOperator(fpga_d, size);
free(host_d);
freeFpgaMem(fpga_d);

The demand paging provided by “unified memory” allows
a simpler (for the programmer) model, resulting in code like
this:
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void* host_d = malloc(size);
executeOperator(host_d, size);
free(host_d);

In a fully cache-coherent system like Enzian [21] this code
would not require copies at all, but in PCIe-based systems
they are needed in both directions: after the computation has
completed, the pages holding the computation results must
also be copied back to the host physical memory.

The cost, therefore, of the unified memory abstraction stems
from page faults on both sides, remapping pages by modifying
page tables, and copying the data between host and FPGA. In
practice, this cost is amortized over the number of iterations
(for example) that the computation performs for each transfer.

Figure 12 shows this overhead in the context of the whole
computation. The workload represents kmeans iterating over
1MiB of data which has to be moved from the host to local
FPGA memory. We vary the number of iterations and measure
the impact of the page fault overhead and initial copy.

For a single iteration the overhead is high (95%), reflecting
the fact that an iteration executes extremely quickly on the
FPGA and is comparable in time to the copy, and suggesting
that this model of memory usage is not ideal for streaming
applications. However, as the iteration count reaches 500, the
overhead has reduced to 2% and is likely to be an acceptable
price to pay for programming convenience.

5 Related work

The FPGA community has generated a tremendous amount
of work in recent years on programming and managing FP-
GAs. We have compared Coyote with many examples already
in Section 3, and two recent surveys [24, 50] give an excel-
lent overview. In this section, therefore, we focus on a few
important recent systems.

The initial version of Microsoft’s Catapult [12,43] environ-
ment offers a reusable, static portion of programmable logic
accessible through a high level API. Configurability for the
(single) application is possible for modules like the network
(recently offloaded to a sophisticated ASIC) and memory. The

accelerator/smartNIC usage model means there is no support
for virtualization nor partial reconfiguration.

Intel’s hybrid CPU-FPGA HARP design [39] turns the
FPGA into one more processor. Intel implements its own
QuickPath interconnect [23] supporting full cache-coherent
memory access, but only to external memory on the CPU side.
Usage model and management is similar to Catapult. Partial
reconfiguration is possible but there is no option to include
local on-board memory or network modules on the FPGA.

Xilinx SDAccel [58], used by Amazon [3] and Alibaba [1]
in their cloud deployments, also divides the FPGA into a static
“shell” and dynamic user regions. One application can run at a
time, but the user logic can be exchanged at run time with the
help of partial reconfiguration. To date, there is no support for
I/O devices or network.

All these deployed systems support only a single applica-
tion at a time, and also do not try to provide a shared virtual
address space between host software and user logic. Systems
in the research literature are rather more ambitious in adopting
one or more ideas from traditional operating systems:

AmorphOS [26] aims to increase FPGA utilization by plac-
ing multiple applications on the FPGA. It provides protec-
tion on FPGA-attached memory, but no access to host mem-
ory. Protection is based on segments set up by the host OS.
AmorphOS can operate in “low-latency mode”, where ap-
plications occupy different parts of the dynamic region, and
“high-throughput” mode, where everything is synthesized into
a single bitstream. Time-division multiplexing in low-latency
mode is achieved by requiring applications to implement cor-
rect checkpoint and resume.

AmorphOS can be seen as pushing many traditional OS
problems into the synthesis pipeline, and compiling many
different bitstreams for configurations which, in Coyote, are
handled at runtime by the same image. Since it provides no
integration with the host memory system, and applications are
directly compiled to the FPGA, AmorphOS provides no vir-
tual memory facilities beyond segmented addressing of FPGA
memory. Scheduling is simplified by not partially reconfig-
uring the FPGA, which also obviates the need to provide a
uniform network interface.

AmorphOS optimizes how many applications can fit on one
FPGA, at the cost of compilation and deployment overheads,
by delegating OS functionality to synthesis tools. In contrast,
Coyote’s OS-centric approach standardizes the execution en-
vironment, allowing applications to be flexibly deployed, and
evaluates the cost of this generality.

Optimus [32] provides FPGA user logic with access to host
memory via a per-application virtual address space. It parti-
tions the dynamic region into application containers which
appear not to be partially reconfigurable, but which can run
the same user logic on behalf of multiple applications. As
in AmorphOS, user logic implements checkpoint and restore
to allow time-division multiplexing of resources. Optimus
allows the host address space to be shared, but does not give
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a host process access to the address space of a vFPGA.
Optimus has many similarities with Coyote, but focuses

on a subset of OS functionality. By avoiding dynamically
reconfiguring vFPGAs, scheduling is simplified relative to
Coyote. Optimus provides address translation, but only for
vFPGA-to-host access, whereas Coyote provides a true uni-
fied virtual address space shared between host process and
user logic. This in turn allows Coyote to virtualize services
like the network stack, something Optimus does not do. Op-
timus therefore does not provide a standard execution envi-
ronment for bitstreams, since the functionality it does provide
would not benefit from such an environment.

ViTAL [62] focusses on clusters of FPGAs and, unlike
Coyote, addresses distributing applications across a cluster.
While it provides a network device, and flexible multiplexing,
it does not target hybrid CPU/FPGA systems, and provides
neither unified memory, nor (e.g.) a shared network stack
between vFPGAs.

ViTAL virtualizes access to the FPGA memory (like Amor-
phOS) and the network device (as a simple point-to-point
communication link). As with Coyote, it uses a fixed partition
of the dynamic region in reusable vFPGA which are allocated
to applications when they are deployed. A key feature of Vi-
TAL is being able to partition applications and compile them
into multiple vFPGAs; these can then be deployed on the
same FPGA or several connected by point-to-point links.

By not supporting host memory access nor virtualizing a
high-level service like TCP or RDMA, ViTAL is relieved of
the need for a virtual memory system. Moreover, by using the
compiler to turning a set of physical FPGAs into one large
logical FPGA by application partitioning, it obviates the need
for a standard execution environment.

To greater or lesser degrees, all these systems focus on
optimizing one or another metric and implement a subset of
the critical functionality of a classical OS.

In contrast, Coyote investigates the consequences of a com-
plete, general-purpose approach: putting a general OS feature
set together (multi-user TCP/IP stack, unified memory trans-
lation/protection across CPU and FPGA, inter-application
communication, standardized execution environment, etc.).
Uniquely, this combination is what allows Coyote to provide
shared high-level OS services like networking.

It also demonstrates that a full set of combined OS features
fundamentally changes how a system like Coyote is designed,
and this is where it differs most from prior work while still
reusing a number of ideas from such systems. We return to
this point in our conclusion.

6 Conclusion

Coyote approaches the FPGA shell as an operating system
design problem. While putting individual OS features on an
FPGA has value, taking a holistic view allows us to identify
how things fit together. The design of virtual memory on an

FPGA changes radically when one takes into account e.g.
FPGA-local devices, or the need to abstract local DRAM con-
trollers. Conversely, abstracting such controllers only works
when one has the right MMU design in place.

For example, allowing both software and hardware appli-
cations to initiate virtual memory accesses to both host and
FPGA memory resources enables a uniform execution envi-
ronment and portability across different memory systems, but
may rule out the application-implemented checkpoint-and-
restore approaches ViTAL and Optimus use for cooperative
"preemption", since there is now per-application state (TLBs,
etc.) not accessible to user logic.

As FPGAs become larger, the demand for the traditional
OS functions of secure multiplexing, sharing, and abstraction
will grow. At the same time, so will the opportunity to pro-
vide more OS-like functions on the FPGA. It is important that
these functions work together. Our evaluation shows that the
price of this complete OS functionality is more than accept-
able in throughput, space efficiency, scheduling overhead, and
memory bandwidth.

A further hardware trend, moreover, is the migration of
commonly-used functions out of synthesized logic and into
hard IP cores on the FPGA. In this rapidly-changing land-
scape, the right set of abstractions can prevent hard-to-develop
OS-style logic from becoming rapidly obsolete.

Experience with software also suggests that OS abstrac-
tions are “sticky”: once decided, they alter very slowly over
time even when the underlying hardware changes radically, to
the detriment of performance and security. This suggests that
it is vitally important to get things “right” as early as possible.

Coyote is a small step in this direction, and shows that
a coherent and reasonably complete set of OS abstractions,
suitably modified, can map well onto an FPGA, deliver both
immediate and longer-term benefits, and impose only a mod-
est overhead on today’s hardware.

Coyote can be downloaded at https://github.com/
fpgasystems/Coyote.
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A Artifact Appendix

A.1 Abstract

Coyote brings operating system abstractions to reconfigurable
heterogeneous architectures. It provides a range of abstrac-
tions which ease the interaction between the host, the FPGA,
the memory and the network. The following sections will
describe the process of obtaining the framework resources
and building them. The application deployment procedure is
shown as well.

A.2 Artifact check-list

• Compilation: HLS, CMake, C++, Boost.

• Run-time environment: Vivado, Linux.

• Hardware: Xilinx.

• Metrics: Throughput, latency, resources, reconfiguration.

• Experiments: HyperLogLog, kmeans, AES, sha256, decision
trees, microbenchmarks.

• Required disk space: 4MiB.

• Expected experiment run time: 2 hours.

• Public link: https://github.com/fpgasystems/
Coyote.

A.3 Description

A.3.1 How to access

The open-source version of the Coyote framework can be
found on Github at the following address:
https://github.com/fpgasystems/Coyote.

A.3.2 Hardware dependencies

The framework targets a variety of Xilinx data center and de-
velopment boards. At this point full support for the following
boards is provided: Alveo U250, Alveo U280, VCU118. The
boards have to be attached to the host system over the PCIe.
If available, the framework takes advantage of the AVX2 (Ad-
vanced Vector Extenstions) instruction set. Legacy support is
also provided.

The hardware build process relies on the Vivado toolchain
and its high-level synthesis extension. Versions 2019.2 and
2020.1 have been officially tested. The toolchain is used for
the compilation of the full and partial bitstreams. It also han-
dles the deployment of the full bitstreams. The automation of
the hardware build process is done with CMake. Minimum
required version is 3.0.

A.3.3 Software dependencies

The software build process is split between the low level
Linux kernel driver and the high level user application layers.

The driver code was tested on the machine with the Linux
kernel version 5.4. This code is built with Makefile.

The user application layer is fully written in C++11. The
Boost libraries (https://www.boost.org/) are used for
the parsing of the command line arguments. As with hardware,
CMake with a minimum version of 3.0 is required for the
software build automation.

A.4 Installation
Pull the newest version of the repository:
$ g i t c l o n e h t t p s : / / g i t h u b . com / f p g a s y s t e m s / Coyote
$ cd Coyote

The network stack submodule and the correct branch can
then be initialized:
$ g i t submodule u p d a t e −− i n i t −− r e c u r s i v e

At this point all the necessary resources are available lo-
cally. Further build is split into separate hardware and soft-
ware processes.

A.4.1 Hardware build

This section explains the process of creating the custom hard-
ware design, the integration of the arbitrary user logic and
finally the formation of the valid FPGA bitstreams.

First create the build directory inside the hw directory:
$ cd hw
$ mkdir b u i l d
$ cd b u i l d

Enter a valid chosen system configuration:
$ cmake . . −DFDEV_NAME=u250 <params . . . >

Large level of configuration flexibility for the framework
is available. This allows the framework to adapt to a variety
of processing scenarios. The following parameters can be
chosen (bolded parameters are passed by default):

• FDEV_NAME: This is the name of the target device.
Supported parameters are <u280, u250, vcu118>.

• N_REGIONS: This is the number of concurrent vFP-
GAs (independent regions). The maximum of 16 regions
per FPGA is supported at the moment <1:16>.

• EN_STRM: Enables the direct host-FPGA streaming
over PCIe lanes <0, 1>.

• EN_DRAM: Enables the local FPGA memory stack
<0, 1>. It can work in conjunction with the streaming.

• N_DRAM_CHAN: The number of the chosen DRAM
channels. The maximum available number depends on
the target board. <1:4>.
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• EN_PR: Enables the partial reconfiguration flow <0,
1>. This partitions the FPGA fabric into multiple dy-
namic regions. The number depends on the amount of
vFPGAs present. A separate partial bitstream will be gen-
erated for each dynamic region. Manual floorplanning
of dynamic regions is advised.

• EN_TCP: Enables the 100G TCP/IP stack <0, 1>.
This integrates a TCP/IP network stack and exposes its
communication interface to every vFPGA.

• EN_RDMA: Enables the 100G RDMA stack <0, 1>.
This integrates a full RDMA network stack with reliable
communication protocol (RC) built on top of RoCE v2.
Interface is exposed to every vFPGA.

The build directory with the chosen configuration is initi-
ated once the previous command completes. Now referenced
high-level synthesis cores can be built:
$ make i n s t a l l i p

The hardware project can then be created:
$ make s h e l l

Once this command completes, the project with one static
and initial vFPGA regions is created (config 0). If partial
reconfiguration flow is enabled, additional sets of partial bit-
streams (new logic for each vFPGA) can be created:
$ make dynamic

This command can be executed multiple times to create mul-
tiple sets of partial bitstreams (config 1, 2, 3, ...).

At this point the user logic can be inserted into vFPGAs.
Wrappers can be found under build project directory in the
hdl/config_X. Once the user design is ready to be compiled,
run the following command:
$ make compi l e

When the compilation finishes, the initial bitstream with
the static region can be loaded to the FPGA via JTAG. This
can be done in Vivado’s programming utility. At any point
during the compilation, the status can be checked by opening
the project in Vivado (start_gui command).

All compiled bitstreams, including partial ones, can be
found in the build directory under bitstreams.

A.4.2 Driver

The driver can be compiled on the host machine:
$ cd d r i v e r
$ make

Once the bitstream is loaded on to the target FPGA, the
rescan of the PCIe can be executed with the utility script:
$ . / u t i l / h o t _ r e s e t . sh

If during this card detection fails, warm reboot of the host
machine has to be completed. The driver can then be inserted
into the kernel:
$ insmod f p g a _ d r v . ko

The software applications can now be executed.

A.4.3 Software build

This section explains the process of building the user appli-
cations that utilize the provided high-level API. Additionally,
the scheduling example provides the runtime manager which
abstracts the application deployment.

First create the build directory inside the directory of the
chosen software project:

$ cd sw / < p r o j e c t >

$ mkdir b u i l d
$ cd b u i l d

Initiate the build configuration and compile the executable:

$ cmake . .
$ make main

System permissions need to be assigned to the executable.

A.4.4 Simulation

The user logic hardware can be simulated in Vivado:

$ cd hw / sim / s c r i p t s / sim
$ v iv ad o −mode t c l − s o u r c e t b . t c l

At this point any user logic can be inserted and arbitrary
stimulus applied. The signal behaviour can then be observed.

A.5 Evaluation and expected result

The user logic for hardware applications (HyperLogLog,
kmeans, AES, decision trees, sha256) and all microbench-
marks can be found under hw/hdl/operators. Examples of
specific network operators are supplied as well. Default con-
figurations of every operator coincide with ones used to obtain
the results in the paper.

The code in sw/base is used for the tests where no explicit
operator control is needed (AES, HyperLogLog, sha256). The
code in sw/scheduling is used for the measurements of the re-
configuration time. Separate code for the operators requiring
more control is provided (kmeans and decision trees).

A.6 Experiment customization

A wide variety of test cases and customization is available
through different system configurations. The users can cre-
ate different versions of the system through combinations of
vFPGAs, network and memory stacks.

A.7 AE Methodology

Submission, reviewing and badging methodology:

• https://www.usenix.org/conference/osdi20/
call-for-artifacts
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