
TritonSort: A Balanced Large-Scale Sorting System

Alexander Rasmussen, George Porter, Michael Conley, Harsha V. Madhyastha†

Radhika Niranjan Mysore, Alexander Pucher∗, Amin Vahdat
UC San Diego, UC Riverside†, and Vienna University of Technology∗

Abstract—We present TritonSort, a highly efficient, scal-
able sorting system. It is designed to process large datasets,
and has been evaluated against as much as 100 TB of input
data spread across 832 disks in 52 nodes at a rate of 0.916
TB/min. When evaluated against the annual Indy GraySort
sorting benchmark, TritonSort is 60% better in absolute
performance and has over six times the per-node efficiency
of the previous record holder. In this paper, we describe
the hardware and software architecture necessary to oper-
ate TritonSort at this level of efficiency. Through careful
management of system resources to ensure cross-resource
balance, we are able to sort data at approximately 80% of
the disks’ aggregate sequential write speed.

We believe the work holds a number of lessons for bal-
anced system design and for scale-out architectures in gen-
eral. While many interesting systems are able to scale lin-
early with additional servers, per-server performance can
lag behind per-server capacity by more than an order of
magnitude. Bridging the gap between high scalability and
high performance would enable either significantly cheaper
systems that are able to do the same work or provide the
ability to address significantly larger problem sets with the
same infrastructure.

1 Introduction
The need for large-scale computing is increasing, driven
by search engines, social networks, location-based ser-
vices, and biological and scientific applications. The
value of these applications is defined by the quality
and quantity of data over which they operate, result-
ing in very high I/O and storage requirements. These
Data-intensive Scalable Computing systems, or DISC
systems[8], require searching and sorting large quanti-
ties of data spread across the network. Sorting forms the
kernel of many data processing tasks in the datacenter,
exercises computing, I/O, and storage resources, and is a
key bottleneck for many large-scale systems.

Several new DISC software architectures have
been developed recently, including MapReduce[9], the
Google File System[11], Hadoop[22], and Dryad[14].
These systems are able to scale linearly with the num-
ber of nodes in the cluster, making it trivial to add new
processing capability and storage capacity to an existing
cluster by simply adding more nodes. This linear scala-

bility is achieved in part by exposing parallel program-
ming models to the user and by performing computation
on data locally whenever possible. Hadoop clusters with
thousands of nodes are now deployed in practice [23].

Despite this linear scaling behavior, per-node perfor-
mance has lagged behind per-server capacity by more
than an order of magnitude. A survey of several de-
ployed DISC sorting systems[4] found that the impres-
sive results obtained by operating at high scale mask a
typically low individual per-node efficiency, requiring
a larger-than-needed scale to meet application require-
ments. For example, among these systems as much as
94% of available disk I/O and 33% CPU capacity re-
mained idle[4]. The largest known industrial Hadoop
clusters achieve only 20 Mbps of average bandwidth for
large-scale data sorting on machines theoretically capa-
ble of supporting a factor of 100 more throughput.

In this work we present TritonSort, a highly efficient
sorting system designed to sort large volumes of data
across dozens of nodes. We have applied it to data sets
as large as 100 terabytes spread across 832 disks in 52
nodes. The key to TritonSort’s efficiency is its balanced
software architecture, which is able to effectively make
use of a large amount of co-located storage per node, en-
suring that the disks are kept as utilized as possible. Our
results show the benefit of our design: evaluating Triton-
Sort against the ‘Indy’ GraySort benchmark[19] resulted
in a system that was able to sort 100TB of input tuples
in about 60% of the absolute time of the previous record-
holder, but with four times fewer resources, resulting in
an increase in per-node efficiency by over a factor of six.

It is important to note that our focus in building Tri-
tonSort is to highlight the efficiency gains that can be
obtained in building systems that process significant
amounts of data through balancing computation, stor-
age, memory, and network. Systems such as Hadoop and
Dryad further support data-level replication, transparent
node failure, and a generalized computational model, all
of which are not currently present in TritonSort. How-
ever, in presenting TritonSort’s hardware and software
architecture, we describe several lessons learned in its
construction that we believe are generalizable to other
data processing systems. For example, our design relies

1

on a very high disk-to-node ratio as well as an explicit,
application-level management of in-memory buffers to
minimize disk seeks and thus increase read and write
throughput. We choose buffer sizes to balance time spent
processing multiple stages of our sort pipeline, and trade
off the utilization of one resource for another.

Our experiences show that for a common datacenter
workload, systems can be built with commodity hard-
ware and open-source software that improve on per-node
efficiency by an order of magnitude while still achiev-
ing scalability. Building such systems will either enable
significantly cheaper systems to be able to do the same
work or provide the ability to address significantly larger
problem sets with the same infrastructure.

The primary contributions of this paper are: 1) the se-
lection of a balanced hardware platform tuned to support
a large-scale sort application, 2) a sort application im-
plemented on top of a staged, pipeline-oriented software
runtime that supports performance tuning via selection
of appropriate buffer sizes and quantities, 3) an examina-
tion of projected sort performance when bottlenecks are
removed, and 4) a discussion of the experience gained in
building and deploying this prototype at scale.

2 Design Challenges
In this paper, we focus on designing systems that sort
large datasets as an instance of the larger problem of
building balanced systems. Here, we present our precise
problem formulation, discuss the challenges involved,
and outline the key insights underlying our approach.

2.1 Problem Formulation
We seek to design a system that sorts large volumes of
input data. Based on the specification of the sort bench-
mark [19], our input data comprises 100 byte tuples with
a 10 byte key and 90 byte value. We target deployments
with input data on the order of tens to hundreds of TB of
randomly-generated tuples. The input data is stored as
a collection of files on persistent storage. The goal of a
sorting system is to transform this input data into an or-
dered set of output files, also stored on persistent storage,
such that the concatenation of these output files in order
constitutes the sorted version of the input data. Our goal
is to design and implement a sorting system that can sort
datasets of the targeted size while achieving a favorable
tradeoff between speed, resource utilization, and cost.

2.2 The Challenge of Efficient Sorting
Sorting large datasets places stress on several resources
in a cluster. First, storing tens to hundreds of TB of input
and output data demands a large amount of storage ca-
pacity. Given the size of the data and modern commod-
ity hard drive capacities, the data must be stored across
several storage devices and almost certainly across many

machines. Second, reading the input data and writing
the output data across many disks simultaneously places
load on both storage devices and I/O controllers. Third,
since the tuples are distributed randomly across the in-
put files, almost all of the large dataset to be sorted will
have to be sent over the network. Finally, comparing tu-
ples in order to sort them requires a non-trivial amount
of compute power. This combination of demands makes
designing a sorting system that efficiently utilizes all of
these resources challenging.

Our key design principle to ensure good resource uti-
lization is to construct a balanced system—a system that
drives all resources at as close to 100% utilization as pos-
sible. For any given application and workload, there will
be an ideal configuration of hardware resources in keep-
ing with the application’s demands on these resources.
In practice, the set of hardware configurations available
is limited by the availability of components (one cannot
currently, for example, buy a processor with exactly 13
cores), and so a configuration must be chosen that best
meets the application’s demands. Once that hardware
configuration is determined, the application must be ar-
chitected to suitably exploit the full capabilities of the
deployed hardware. In the following section, we outline
our considerations in designing such a balanced system,
including our choice of a specific hardware and software
architecture. We did not choose this platform with sort-
ing in mind, and so we believe that our design generalizes
to other DISC problems as well.

2.3 Design Considerations

Our system’s design is motivated by three main consider-
ations. First, we rely only on commodity hardware com-
ponents. This is both to keep the costs of our system rel-
atively low and to have our system be representative of
today’s data centers so that the lessons we learn can be
applied to other applications with workload characteris-
tics similar to those of sort. Hence, we do not make use
of networking substrates such as Infiniband that provide
high network bandwidth at high cost. Also, despite the
recent emergence of solid state drives (SSDs) that pro-
vide higher I/O rates, we chose to use hard disks because
they continue to provide the most affordable option for
high capacity storage and streaming I/O. We believe that
properly-architected sorting software should not stress
random I/O behavior, where SSDs currently excel.

Second, we focus our software architecture on mini-
mizing disk seeks. In the particular hardware configu-
ration we chose, the key bottleneck for sort among the
various system resources is disk I/O bandwidth. Hence,
the primary goal of the system is to enable all disks to
operate continuously at peak bandwidth. The main chal-
lenge in sustaining peak disk bandwidth is to minimize

2

the amount of time the disks spend seeking, since any
time seeking is not spent transferring data.

Third, we choose to focus on hardware architectures
whose total memory cannot contain the entire dataset.
One possible implementation of sort is to read all the
input data into memory, appropriately shuffle the data
across machines in the cluster, sort the local in-memory
data on each machine, and then write the sorted data
to the local disks. Note that in this case, every tuple is
read from and written to persistent storage exactly once.
However, this implementation would require an amount
of memory at least equal to the amount of input data;
given that the cost per GB of RAM is over 70 times more
than that of disks, such a design would significantly drive
up costs and be infeasible for large input datasets.

Instead, we pursue an alternative implementation
wherein every tuple is read and written multiple times
from disk before the data is completely sorted. Storing
intermediate results on disk makes the system’s memory
requirement far more modest. Sorting data on clusters
that have less memory than the total amount of data to be
sorted requires every input tuple to be read and written
at least twice [1]. Since every additional read and write
increases the time to sort, we seek to achieve exactly this
lower bound to maximize system performance.

2.4 Hardware Architecture
To determine the right hardware configuration for our ap-
plication, we make the following observations about the
sort workload. First, the application needs to read ev-
ery byte of the input data and the size of the input is
equal to that of the output. Since the “working set” is
so large, it does not make sense to separate the cluster
into computation-heavy and storage-heavy regions. In-
stead, we provision each server in the cluster with an
equal amount of processing power and disks.

Second, almost all of the data needs to be exchanged
between machines since input data is randomly dis-
tributed throughout the cluster and adjacent tuples in the
sorted sequence must reside on the same machine. To
balance the system, we need to ensure that this all-to-all
shuffling of data can happen in parallel without network
bandwidth becoming a bottleneck. Since we focus on
using commodity components, we use an Ethernet net-
work fabric. Commodity Ethernet is available in a set
of discrete bandwidth levels—1 Gbps, 10 Gbps, and 40
Gbps—with cost increasing proportional to throughput
(see Table 1). Given our choice of 7.2k-RPM disks for
storage, a 1 Gbps network can accommodate at most one
disk per server without the network throttling disk I/O.
Therefore, we settle on a 10 Gbps network; 40 Gbps
Ethernet has yet to mature and hence is still cost pro-
hibitive. To balance a 10 Gbps network with disk I/O,
we use a server that can host 16 disks. Based on the op-

Storage
Type Capacity R/W throughput Price

7.2k-RPM 500 GB 90-100 MBps $200
15k-RPM 150 GB 150 MBps $290

SSD 64 GB 250 MBps $450

Network
Type Cost/port

1 Gbps Ethernet $33
10 Gbps Ethernet $480

Server
Type Cost

8 disks, 8 CPU cores $5,050
8 disks, 16 CPU cores $5,450
16 disks, 16 CPU cores $7,550

Table 1: Resource options considered for constructing a
cluster for a balanced sorting system. These values are
estimates as of January, 2010.

tions available commercially for such a server, we use a
server that hosts 16 disks and 8 CPU cores. The choice of
8 cores was driven by the available processor packaging:
two physical quad-core CPUs. The larger the number
of separate threads, the more stages that can be isolated
from each other. In our experience, the actual speed of
each of these cores was a secondary consideration.

Third, sort demands both significant capacity and I/O
requirements from storage since tens to hundreds of TB
of data is to be stored and all the data is to be read and
written twice. To determine the best storage option given
these requirements, we survey a range of hard disk op-
tions shown in Table 1. We find that 7.2k-RPM SATA
disks provide the most cost-effective option in terms of
balancing $ per GB and $ per read/write MBps (assum-
ing we can achieve streaming I/O). To allow 16 disks to
operate at full streaming I/O throughput, we require stor-
age controllers that are able to sustain at least 1600 MBps
of streaming bandwidth. Because of the PCI bus’ band-
width limitations, our hardware design necessitated two
8x PCI drive controllers, each supporting 8 disks.

The final design choice in provisioning our cluster is
the amount of memory each server should have. The
primary purpose of memory in our system is to enable
large amounts of data buffering so that we can read from
and write to the disk in large chunks. The larger these
chunks become, the more data can be read or written be-
fore seeking is required. We initially provisioned each of
our machines with 12 GB of memory; however, during
development we realized that 24 GB was required to pro-
vide sufficiently large writes, and so the machines were
upgraded. We discuss this addition when we present our

3

architecture in Section 3. One of the key takeaways from
our work is the important role that buffering plays in en-
abling high utilization of the network, disk, and CPU.
Determining the appropriate amount of memory buffer-
ing is not straightforward and we leave to future work
techniques that help automate this process.

2.5 Software Architecture
To maximize cluster resource utilization, we need to de-
sign an appropriate software architecture. There are a
range of possible software architectures in keeping with
our constraint of reading and writing every input tuple at
most twice. The class of architectures upon which we
focus share a similar basic structure. These architectures
consist of two phases separated by a distributed barrier,
so that all nodes must complete phase one before phase
two begins. In the first phase, input data is read from disk
and routed to the node upon which it will ultimately re-
side. Each node is responsible for storing a disjoint por-
tion of the key space. When data arrives at its destination
node, that node writes the data to its local disks. In the
second phase, each node sorts the data on its local disks
in parallel. At the end of the second phase, each node has
a portion of the final sorted sequence stored on its local
disks, and the sorted sequences stored on all nodes can be
concatenated together to form the final sorted sequence.

There are several possible implementations of this
general architecture, but any implementation contains
at least a few basic software elements. These software
elements include Readers that read data from on-disk
files into in-memory buffers, Writers that write buffers to
disk, Distributors that distribute a buffer’s tuples across
a set of logical divisions and Sorters that sort buffers.

Our initial implementation of TritonSort was designed
as a distributed parallel external merge-sort. This ar-
chitecture, which we will call the Heaper-Merger archi-
tecture, is structured as follows. In phase one, Readers
read from the input files into buffers, which are sorted
by Sorters. Each sorted buffer is then passed to a Dis-
tributor, which splits the buffer into a sorted chunk per
node and sends each chunk to its corresponding node.
Once received, these sorted chunks are heap-sorted by
software elements called Heapers in batches and each
resulting sorted batch is written to an intermediate file
on disk. In the second phase, software elements called
Mergers merge-sort the intermediate files on a given disk
into a single sorted output file.

The problem with the Heaper-Merger architecture is
that it does not scale well. In order to prevent the Heaper
in phase one from becoming a bottleneck, the length of
the sorted runs that the Heaper generates is usually fairly
small, on the order of a few hundred megabytes. As a
consequence, the number of intermediate files that the
Merger must merge in phase two grows quickly as the

Figure 1: Performance of a Heaper-Merger sort imple-
mentation in microbenchmark on a 200GB per disk par-
allel external merge-sort as a function of the number of
files merged per disk.

size of the input data increases. This reduces the amount
of data from each intermediate file that can be buffered at
a time by the Merger and requires that the merger fetch
additional data from files much more frequently, causing
many additional seeks.

To demonstrate this problem, we implemented a sim-
ple Heaper-Merger sort module in microbenchmark. We
chose to sort 200GB per disk in parallel across all the
disks to simulate the system’s performance during a
100TB sort. Each disk’s 200GB data set is partitioned
among an increasingly large number of files. Each node’s
memory is divided such that each input file and each
output file can be double-buffered. As shown in Fig-
ure 1, increasing the number of files being merged causes
throughput to decrease dramatically as the number of
files increases above 1000.

TritonSort uses an alternative architecture with simi-
lar software elements as above and again involving two
phases. We partition the input data into a set of logical
partitions; withD physical disks andL logical partitions,
each logical partition corresponds to a contiguous 1

L

th

fraction of the key space and each physical disk hosts L
D

logical partitions. In the first phase, Readers pass buffers
directly to Distributors. A Distributor maps the key of
every tuple in its input buffer to its corresponding logical
partition and sends that tuple over the network to the ma-
chine that hosts this logical partition. Tuples for a given
logical partition are buffered in memory and written to
disk in large chunks in order to seek as little as possible.
In the second phase, each logical partition is read into
an in-memory buffer, that buffer is sorted, and the sorted
buffer is written to disk. This scheme bypasses the seek
limits of the earlier mergesort-based approach. Also, by
appropriately choosing the value of L, we can ensure that
logical partitions can be read, sorted and written in par-
allel in the second phase. Since our testbed nodes have
24GB of RAM, to ensure this condition we set the num-

4

ber of logical partitions per node to 2520 so that each
logical partition contains less than 1GB of tuples when
we sort 100 TB on 52 nodes. We explain this architec-
ture in more detail in the context of our implementation
in the next section.

3 Design and Implementation
TritonSort is a distributed, staged, pipeline-oriented
dataflow processing system. In this section, we describe
TritonSort’s design and motivate our design decisions for
each stage in its processing pipeline.

3.1 Architecture Overview
Figures 2 and 7 show the stages of a TritonSort program.
Stages in TritonSort are organized in a directed graph
(with cycles permitted). Each stage in TritonSort im-
plements part of the data processing pipeline and either
sources, sinks, or transmutes data flowing through it.

Each stage is implemented by two types of logical
entities—several workers and a single WorkerTracker .
Each worker runs in its own thread and maintains its own
local queue of pending work. We refer to the discrete
pieces of data over which workers operate as work units
or simply as work. The WorkerTracker is responsible for
accepting work for its stage and assigning that work to
workers by enqueueing the work onto the worker’s work
queue. In each phase, all the workers for all stages in that
phase run in parallel.

Upon starting up, a worker initializes any required in-
ternal state and then waits for work. When work arrives,
the worker executes a stage-specific run() method that
implements the specific function of the stage, handling
work in one of three ways. First, it can accept an indi-
vidual work unit, execute the run() method over it, and
then wait for new work. Second, it can accept a batch of
work (up to a configurable size) that has been enqueued
by the WorkerTracker for its stage. Lastly, it can keep its
run() method active, polling for new work explicitly. Tri-
tonSort stages implement each of these methods, as de-
scribed below. In the process of running, a stage can pro-
duce work for a downstream stage and optionally specify
the worker to which that work should be directed. If a
worker does not specify a destination worker, work units
are assigned to workers round-robin.

In the process of executing its run() method, a worker
can get buffers from and return buffers to a shared pool
of buffers. This buffer pool can be shared among the
workers of a single stage, but is typically shared between
workers in pairs of stages with the upstream stage getting
buffers from the pool and the downstream stage putting
them back. When getting a buffer from a pool, a stage
can specify whether or not it wants to block waiting for
a buffer to become available if the pool is empty.

3.2 Sort Architecture
We implement sort in two phases. First, we perform dis-
tribution sort to partition the input data across L logical
partitions evenly distributed across all nodes in the clus-
ter. Each logical partition is stored in its own logical disk.
All logical disks are of identical maximum size sizeLD

and consist of files on the local file system.
The value of sizeLD is chosen such that logical disks

from each physical disk can be read, sorted and written
in parallel in the second phase, ensuring maximum re-
source utilization. Therefore, if the size of the input data
is sizeinput, there are L = sizeinput

sizeLD
logical disks in the

system. In phase two, the tuples in each logical disk get
sorted locally and written to an output file. This imple-
mentation satisfies our design goal of reading and writing
each tuple twice.

To determine which logical disk holds which tuples,
we logically partition the 10-byte key space into L even
divisions. We logically order the logical disks such that
the kth logical disk holds tuples in the kth division. Sort-
ing each logical disk produces a collection of output files,
each of which contains sorted tuples in a given partition.
Hence, the ordered collection of output files represents
the sorted version of the data. In this paper, we assume
that tuples’ keys are distributed uniformly over the key
range which ensures that each logical disk is approxi-
mately the same size; we discuss how TritonSort can be
made to handle non-uniform key ranges in Section 6.1.

To ensure that we can utilize as much read/write band-
width as possible on each disk, we partition the disks on
each node into two groups of 8 disks each. One group
of disks holds input and output files; we refer to these
disks as the input disks in phase one and as the output
disks in phase two. The other group holds intermediate
files; we refer to these disks as the intermediate disks. In
phase one, input files are read from the input disks and
intermediate files are written to the intermediate disks. In
phase two, intermediate files are read from the intermedi-
ate disks and output files are written to the output disks.
Thus, the same disk is never concurrently read from and
written to, which prevents unnecessary seeking.

3.3 TritonSort Architecture: Phase One
Phase one of TritonSort, diagrammed in Figure 2, is re-
sponsible for reading input tuples off of the input disks,
distributing those tuples over to the network to the nodes
on which they belong, and storing them into the logical
disks in which they belong.

Reader: Each Reader is assigned an input disk and is
responsible for reading input data off of that disk. It does
this by filling 80 MB ProducerBuffers with input data.
We chose this size because it is large enough to obtain
near sequential throughput from the disk.

5

Reader
8

Node
Distributor

3
Sender

1
Receiver

1

LogicalDisk
Distributor

1
Coalescer

8
Writer

8

Input
 Disk

8

Producer
Buffer
Pool

Sender
Node
Buffer
Pool

Network

Receiver
Node
Buffer
Pool

LD
Buffer
Pool

Writer
Buffer
Pool

Intermediate
Disk

8

Figure 2: Block diagram of TritonSort’s phase one architecture. The number of workers for a stage is indicated in the
lower-right corner of that stage’s block, and the number of disks of each type is indicated in the lower-right corner of
that disk’s block.

NodeBuffer Table

t0 t1 t2

ProducerBuffer

1 N00

. . .

1

H(key(t0))

H(key(t2))
H(key(t1))2

Full Buffers
To Sender

2.5

Empty Buffers
from Pool

Figure 3: The NodeDistributor stage, responsible for par-
titioning tuples by destination node.

NodeDistributor: A NodeDistributor (shown in Fig-
ure 3) receives a ProducerBuffer from a Reader and is re-
sponsible for partitioning the tuples in that buffer across
the machines in the cluster. It maintains an internal data
structure called a NodeBuffer table, which is an array of
NodeBuffers, one for each of the nodes in the cluster. A
NodeBuffer contains tuples belonging to the same desti-
nation machine. Its size was chosen to be the size of the
ProducerBuffer divided by the number of nodes, and is
approximately 1.6 MB in size for the scales we consider
in this paper.

The NodeDistributor scans the ProducerBuffer tuple
by tuple. For each tuple, it computes a hash function
H(k) over the tuple’s key k that maps the tuple to a
unique host in the range [0, N − 1]. It uses the Node-
Buffer table to select a NodeBuffer corresponding to host
H(k) and appends the tuple to the end of that buffer. If
that append operation causes the buffer to become full,
the NodeDistributor removes the NodeBuffer from the
NodeBuffer table and sends it downstream to the Sender
stage. It then gets a new NodeBuffer from the Node-
Buffer pool and inserts that buffer into the newly empty
slot in the NodeBuffer table. Once the NodeDistributor
is finished processing a ProducerBuffer, it returns that
buffer back to the ProducerBuffer pool.

Sender: The Sender stage (shown in Figure 4) is
responsible for taking NodeBuffers from the upstream
NodeDistributor stage and transmitting them over the
network to each of the other nodes in the cluster. Each
Sender maintains a separate TCP socket per peer node

send()Sent Buffers To
NodeBuffer Pool

1
NodeBuffer Partially Sent NodeBuffers

2

3

0

1

...

N

1

Figure 4: The Sender stage, responsible for sending data
to other nodes.

in the cluster. The Sender stage can be implemented
in a multi-threaded or a single-threaded manner. In the
multi-threaded case, N Sender workers are instantiated
in their own threads, one for each destination node. Each
Sender worker simply issues a blocking send() call on
each NodeBuffer it receives from the upstream NodeDis-
tributor stage, sending tuples in the buffer to the appro-
priate destination node over the socket open to that node.
When all the tuples in a buffer have been sent, the Node-
Buffer is returned to its pool, and the next one is pro-
cessed. For reasons described in Section 4.1, we choose
a single-threaded Sender implementation instead. Here,
the Sender interleaves the sending of data across all the
destination nodes in small non-blocking chunks, so as to
avoid the overhead of having to activate and deactivate
individual threads for each send operation to each peer.

Unlike most other stages, which process a single unit
of work during each invocation of their run() method, the
Sender continuously processes NodeBuffers as it runs,
receiving new work as it becomes available from the
NodeDistributor stage. This is because the Sender must
remain active to alternate between two tasks: accept-
ing incoming NodeBuffers from upstage NodeDistribu-
tors, and sending data from accepted NodeBuffers down-
stream. To facilitate accepting incoming NodeBuffers,
each Sender maintains a set of NodeBuffer lists, one for
each destination host. Initially these lists are empty. The
Sender appends each NodeBuffer it receives onto the list
of NodeBuffers corresponding to the incoming Node-
Buffer’s destination node.

6

0

N

1

0

...

1

N
recv()

Empty Buffers
From Pool

Full Buffers To
LD Distributor

Receiver NodeBuffersSockets

1

2

3

...

Figure 5: The Receiver stage, responsible for receiving
data from other nodes’ Sender stages.

To send data across the network, the Sender loops
through the elements in the set of NodeBuffer lists. If
the list is non-empty, the Sender accesses the Node-
Buffer at the head of the list, and sends a fixed-sized
amount of data to the appropriate destination host using
a non-blocking send() call. If the call succeeds and some
amount of data was sent, then the NodeBuffer at the head
of the list is updated to note the amount of its contents
that have been successfully sent so far. If the send() call
fails, because the TCP send buffer for that socket is full,
that buffer is simply skipped and the Sender moves on
to the next destination host. When all of the data from
a particular NodeBuffer is successfully sent, the Sender
returns that buffer back to its pool.

Receiver: The Receiver stage, shown in Figure 5,
is responsible for receiving data from other nodes in
the cluster, appending that data onto a set of Node-
Buffers, and passing those NodeBuffers downstream to
the LogicalDiskDistributor stage. In TritonSort, the Re-
ceiver stage is instantiated with a single worker. On
starting up, the Receiver opens a server socket and ac-
cepts incoming connections from Sender workers on re-
mote nodes. Its run() method begins by getting a set of
NodeBuffers from a pool of such buffers, one for each
source node. The Receiver then loops through each of
the open sockets, reading up to 16KB of data at a time
into the NodeBuffer for that source node using a non-
blocking recv() call. This small socket read size is due
to the rate-limiting fix that we explain in Section 4.1. If
data is returned by that call, it is appended to the end
of the NodeBuffer. If the append would exceed the size
of the NodeBuffer, that buffer is sent downstream to the
LogicalDiskDistributor stage, and a new NodeBuffer is
retrieved from the pool to replace the NodeBuffer that
was sent.

LogicalDiskDistributor: The LogicalDisk-
Distributor stage, shown in Figure 6, receives Node-
Buffers from the Receiver that contain tuples destined
for logical disks on its node. LogicalDiskDistributors
are responsible for distributing tuples to appropriate
logical disks and sending groups of tuples destined for
the same logical disk to the downstream Writer stage.

LDBuffer
Array

LDBuffer
TableEmpty Buffers

from Pool To Coalescer

t0 t1 t2

≥5MB
0
1

L

< 5MB

0
1

...

L

2

3.1
3.2

. . .

2.2 2.1

NodeBuffer1

H
(k

ey
(t0

))
H

(k
ey

(t1
))

H
(k

ey
(t2

))

Figure 6: The LogicalDiskDistributor stage, responsible
for distributing tuples across logical disks and buffering
sufficient data to allow for large writes.

The LogicalDiskDistributor’s design is driven by the
need to buffer enough data to issue large writes and
thereby minimize disk seeks and achieve high band-
width. Internal to the LogicalDiskDistributor are two
data structures: an array of LDBuffers, one per logical
disk, and an LDBufferTable. An LDBuffer is a buffer
of tuples destined to the same logical disk. Each LD-
Buffer is 12,800 bytes long, which is the least common
multiple of the tuple size (100 bytes) and the direct I/O
write size (512 bytes). The LDBufferTable is an array
of LDBuffer lists, one list per logical disk. Additionally,
LogicalDiskDistributor maintains a pool of LDBuffers,
containing 1.25 million LDBuffers, accounting for 20 of
each machine’s 24 GB of memory.

Algorithm 1 The LogicalDiskDistributor stage
1: NodeBuffer← getNewWork()
2: {Drain NodeBuffer into the LDBufferArray}
3: for all tuples t in NodeBuffer do
4: dst = H(key(t))
5: LDBufferArray[dst].append(t)
6: if LDBufferArray[dst].isFull() then
7: LDTable.insert(LDBufferArray[dst])
8: LDBufferArray[dst] = getEmptyLDBuffer()
9: end if

10: end for
11: {Send full LDBufferLists to the Coalescer}
12: for all physical disks d do
13: while LDTable.sizeOfLongestList(d) ≥ 5MB do
14: ld← LDTable.getLongestList(d)
15: Coalescer.pushNewWork(ld)
16: end while
17: end for

The operation of a LogicalDiskDistributor worker is
described in Algorithm 1. In Line 1, a full NodeBuffer
is pushed to the LogicalDiskDistributor by the Receiver.

7

Lines 3-10 are responsible for draining that NodeBuffer
tuple by tuple into an array of LDBuffers, indexed by the
logical disk to which the tuple belongs. Lines 12-17 ex-
amine the LDBufferTable, looking for logical disk lists
that have accumulated enough data to write out to disk.
We buffer at least 5 MB of data for each logical disk
before flushing that data to disk to prevent many small
write requests from being issued if the pipeline temporar-
ily stalls. When the minimum threshold of 5 MB is met
for any particular physical disk, the longest LDBuffer list
for that disk is passed to the Coalescer stage on Line 15.

The original design of the LogicalDiskDistributor only
used the LDBuffer array described above and used much
larger LDBuffers (~10MB each) rather than many small
LDBuffers. The Coalescer stage (described below) did
not exist; instead, the LogicalDiskDistributor transferred
the larger LDBuffers directly to the Writer stage.

This design was abandoned due to its inefficient use
of memory. Temporary imbalances in input distribution
could cause LDBuffers for different logical disks to fill at
different rates. This, in turn, could cause an LDBuffer to
become full when many other LDBuffers in the array are
only partially full. If an LDBuffer is not available to re-
place the full buffer, the system must block (either imme-
diately or when an input tuple is destined for that buffer’s
logical disk) until an LDBuffer becomes available. One
obvious solution to this problem is to allow partially full
LDBuffers to be sent to the Writers at the cost of lower
Writer throughput. This scheme introduced the further
problem that the unused portions of the LDBuffers wait-
ing to be written could not be used by the LogicalDisk-
Distributor. In an effort to reduce the amount of memory
wasted in this way, we migrated to the current architec-
ture, which allows small LDBuffers to be dynamically
reallocated to different logical disks as the need arises.
This comes at the cost of additional computational over-
head and memory copies, but we deem this cost to be
acceptable due to the small cost of memory copies rela-
tive to disk seeks.

Coalescer: The operation of the Coalescer stage is
simple. A Coalescer will copy tuples from each LD-
Buffer in its input LDBuffer list into a WriterBuffer and
pass that WriterBuffer to the Writer stage. It then returns
the LDBuffers in the list to the LDBuffer pool.

Originally, the LogicalDiskDistributor stage did the
work of the Coalescer stage. While optimizing the sys-
tem, however, we realized that the non-trivial amount of
time spent merging LDBuffers into a single WriterBuffer
could be better spent processing additional NodeBuffers.

Writer: The operation of the Writer stage is also quite
simple. When a Coalescer pushes a WriterBuffer to it,
the Writer worker will determine the logical disk corre-
sponding to that WriterBuffer and write out the data us-

Intermediate
Disk

Reader

Phase2
Buffer
Pool

Sorter Writer Output
Disk

8 8 4 8 8

Figure 7: Block diagram of TritonSort’s phase two archi-
tecture. The number of workers for a stage is indicated in
the lower-right corner of that stage’s block, and the num-
ber of disks of each type is indicated in the lower-right
corner of that disk’s block.

ing a blocking write() system call. When the write com-
pletes, the WriterBuffer is returned to the pool.

3.4 TritonSort Architecture: Phase Two
Once phase one completes, all of the tuples from the in-
put dataset are stored in appropriate logical disks across
the cluster’s intermediate disks. In phase two, each of
these unsorted logical disks is read into memory, sorted,
and written out to an output disk. The pipeline is straight-
forward: Reader and Writer workers issue sequential,
streaming I/O requests to the appropriate disk, and Sorter
workers operate entirely in memory.

Reader: The phase two Reader stage is identical to
the phase one Reader stage, except that it reads into a
PhaseTwoBuffer, which is the size of a logical disk.

Sorter: The Sorter stage performs an in-memory sort
on a PhaseTwoBuffer. A variety of sort algorithms can
be used to implement this stage, however we selected the
use of radix sort due to its speed. Radix sort requires ad-
ditional memory overhead compared to an in-place sort
like QuickSort, and so the sizes of our logical disks have
to be sized appropriately so that enough Reader–Sorter–
Writer pipelines can operate in parallel. Our version
of radix sort first scans the buffer, constructing a set of
structures containing a pointer to each tuple’s key and
a pointer to the tuple itself. These structures are then
sorted by key. Once the structures have been sorted, they
are used to rearrange the tuples in the buffer in-place.
This reduces the memory overhead for each Sorter sub-
stantially at the cost of additional memory copies.

Writer: The phase two Writer writes a PhaseTwo-
Buffer sequentially to a file on an output disk. As in
phase one, each Writer is responsible for writes to a sin-
gle output disk.

Because the phase two pipeline operates at the granu-
larity of a logical disk, we can operate several of these
pipelines in parallel, limited by either the number of
cores in each system (we can’t have more pipelines than
cores without sacrificing performance because the Sorter
is CPU-bound), the amount of memory in the system

8

Figure 9: Comparing the scalability of single-threaded
and multi-threaded Receiver implementations

(each pipeline requires at least three times the size of a
logical disk to be able to read, sort, and write in parallel),
or the throughput of the disks. In our case, the limiting
factor is the output disk bandwidth. To host one phase
two pipeline per input disk requires storing 24 logical
disks in memory at a time. To accomplish this, we set
sizeLD to 850MB, using most of the 24 GB of RAM
available on each node and allowing for additional mem-
ory required by the operating system. To sort 850MB
logical disks fast enough to not block the Reader and
Writer stages, we find that four Sorters suffice.

3.5 Stage and Buffer Sizing
One of the major requirements for operating TritonSort
at near disk speed is ensuring cross-stage balance. Each
stage has an intrinsic execution time, either based on the
speed of the device to which it interfaces (e.g., disks or
network links), or based on the amount of CPU time it re-
quires to process a work unit. Figure 8 shows the speed
and performance of each stage in the pipeline. In our im-
plementation, we are limited by the speed of the Writer
stage in both phases one and two.

4 Optimizations
In implementing the TritonSort architecture, we learned
that several non-obvious optimizations were necessary to
meet our desired goal of driving every disk at full utiliza-
tion. Here, we present the key takeaways from our expe-
rience. In each case, we believe these lessons generalize
to a wide variety of DISC systems.

4.1 Network
For TritonSort to operate at the aggregate sequential
streaming bandwidth of all of its disks, the network must
be able to sustain the read throughput of eight disks while
data is being shuffled among nodes in the first phase.
Since the 7.2k-RPM disks we use deliver at most 100
MBps of sequential read throughput (Table 1), the net-

work must be able to sustain 6.4 Gbps of all-pairs band-
width, irrespective of the number of nodes in the cluster.

It is well-known that sustaining high-bandwidth flows
in datacenter networks, especially all-to-all patterns, is a
significant challenge. Reasons for this include commod-
ity datacenter network hardware, incast, queue buildup,
and buffer pressure[2]. Since we could not employ a
strategy like that presented in [2] to provide fair but high
bandwidth flow rates among the senders, we chose in-
stead to artificially rate limit each flow at the Sender
stage to its calculated fair share by forcing the sockets
to be receive window limited. This works for TritonSort
because 1) each machine sends and receives at approx-
imately the same rate, 2) all the nodes share the same
RTT since they are interconnected by a single switch,
and 3) our switch does not impose an oversubscription
factor. In this case, each Sender should ideally send at
a rate of (6.4/N) Gbps, or 123 Mbps with a cluster of
52 nodes. Given that our network offers approximately
100µsec RTTs, a receiver window size of 8 − 16 KB
ensures that the flows will not impose queue buildup or
buffer pressure on other flows.

Initially, we chose a straightforward multi-threaded
design for the Sender and Receiver stages in which there
were N Senders and N Receivers, one for each Triton-
Sort node. In this design, each Sender issues block-
ing send() calls on a NodeBuffer until it is sent. Like-
wise, on the destination node, each Receiver repeatedly
issues blocking recv() calls until a NodeBuffer has been
received. Because the number of CPU hyperthreads on
each of our nodes is typically much smaller than 2N , we
pinned all Senders’ threads to a single hyperthread and
all Receivers’ threads to a single separate hyperthread.

Figure 9 shows that this multi-threaded approach does
not scale well with the number of nodes, dropping below
4 Gbps at scale. This poor performance is due to thread
scheduling overheads at the end hosts. 16 KB TCP re-
ceive buffers fill up much faster than connections that are
not window-limited. At the rate of 123 MBps, a 16 KB
buffer will fill up in just over 1 ms, causing the Sender
to stop sending. Thus, the Receiver stage must clear out
each of its buffers at that rate. Since there are 52 such
buffers, a Receiver must visit and clear a receive buffer in
just over 20 µs. A Receiver worker thread cannot drain
the socket, block, go to sleep, and get woken up again
fast enough to service buffers at this rate.

To circumvent this problem we implemented a single-
threaded, non-blocking receiver that scans through each
socket in round-robin order, copying out any available
data and storing it in a NodeBuffer during each pass
through the array of open sockets. This implementation
is able to clear each socket’s receiver buffer faster than
the arrival rate of incoming data. Figure 9 shows that
this design scales well as the cluster grows.

9

Worker Type Size Of Runtime # Workers Throughput Total Throughput
Input (MB) (ms) (in MBps) (in MBps)

Reader 81.92 958.48 8 85 683
NodeDistributor 81.92 263.54 3 310 932

LogicalDiskDistributor 1.65 2.42 1 683 683
Coalescer 10.60 4.56 8 2,324 18,593

Writer 10.60 141.07 8 75 601
Phase two Reader 762.95 8,238 8 92 740
Phase two Sorter 762.95 2,802 4 272 1089
Phase two Writer 762.95 8,512 8 89 717

Figure 8: Median stage runtimes for a 52-node, 100TB sort, excluding the amount of time spent waiting for buffers.

Figure 10: Microbenchmark indicating the ideal disk
throughput as a function of write size

4.2 Minimizing Disk Seeks

Key to making the TritonSort pipeline efficient is min-
imizing the total amount of time spent performing disk
seeks, both while writing data in phase one, and while
reading that data in phase two. As individual write sizes
get smaller, the throughput drops, since the disk must oc-
casionally seek between individual write operations. Fig-
ure 10 shows disk write throughput measured by a syn-
thetic workload generator writing to a configurable set of
files with different write sizes. Ideally, the Writer would
receive WriterBuffers large enough that it can write them
out at close to the sequential rate of the disk, e.g., 80
MB. However, the amount of available memory limits
TritonSort’s write sizes. Since the tuple space is uni-
formly distributed across the logical disks, the Logical-
DiskDistributor will fill its LDBuffers at approximately
a uniform rate. Buffering 80 MB worth of tuples for a
given logical disk before writing to disk would cause the
buffers associated with all of the other logical disks to
become approximately as full. This would mandate sig-
nificantly higher memory needs than what is available
in our hardware architecture. Hence, the LogicalDisk-
Distributor stage must emit smaller WriterBuffers, and it

must interleave writes to different logical disks.

4.3 The Importance of File Layout
The physical layout of individual logical disk files plays a
strong role in trading off performance between the phase
one Writer and the phase two Reader. One strategy is to
append to the logical disk files in a log-structured man-
ner, in which a WriterBuffer for one logical disk is im-
mediately appended after the WriterBuffer for a different
logical disk. This is possible if the logical disks’ blocks
are allocated on demand. It has the advantage of mak-
ing the phase one Writer highly performant, since it min-
imizes seeks and leads to near-sequential write perfor-
mance. On the other hand, when a phase two Reader
begins reading a particular logical disk, the underlying
physical disk will need to seek frequently to read each of
the WriterBuffers making up the logical disk.

An alternative approach is to greedily allocate all of
the blocks for each of the logical disks at start time, en-
suring that all of a logical disk’s blocks are physically
contiguous on the underlying disk. This can be accom-
plished with the fallocate() system call, which provides
a hint to the file system to pre-allocate blocks. In this
scheme, interleaved writes of WriterBuffers for different
logical disks will require seeking since two subsequent
writes to different logical disks will need to write to dif-
ferent contiguous regions on the disk. However, in phase
two, the Reader will be able to sequentially read an en-
tire logical disk with minimal seeking. We also use fallo-
cate() on input and output files so that phase one Readers
and phase two Writers seek as little as possible.

The location of output files on the output disks also
has a dramatic effect on phase two’s performance. If we
do not delete the input files before starting phase two, the
output files are allocated space on the interior cylinders
of the disk. When evaluating phase two’s performance on
a 100 TB sort, we found that we could write to the inte-
rior cylinders of the disk at an average rate of 64 MBps.
When we deleted the input files before phase two began,
ensuring that the output files would be written to the ex-
terior cylinders of the disk, this rate jumped to 84 MBps.

10

For the evaluations in Section 5, we delete the input files
before starting phase two. For reference, the fastest we
have been able to write to the disks in microbenchmark
has been approximately 90 MBps.

4.4 CPU Scheduling
Modern operating systems support a wide variety of
static and dynamic CPU scheduling approaches, and
there has been considerable research into scheduling dis-
ciplines for data processing systems. We put a significant
amount of effort into isolating stages from one another by
setting the processor affinities of worker threads explic-
itly, but we eventually discovered that using the default
Linux scheduler results in a steady-state performance
that is only about 5% worse than any custom scheduling
policy we devised. In our evaluation, we use our custom
scheduling policy unless otherwise specified.

4.5 Pipeline Demand Feedback
Initially, TritonSort was entirely “push”-based, meaning
that a worker only processed work when it was pushed
to it from a preceding stage. While simple to design, cer-
tain stages perform sub-optimally when they are unable
to send feedback back in the pipeline as to what work
they are capable of doing. For example, the throughput
of the Writer stage in phase one is limited by the latency
of writes to the intermediate disks, which is governed by
the sizes of WriterBuffers sent to it as well as the physical
layout of logical disks (due to the effects of seek and ro-
tational delay). In its naı̈ve implementation, the Logical-
DiskDistributor sends work to the Writer stage based on
which of its LDBuffer lists is longest with no regard to
how lightly or heavily loaded the Writers themselves are.
This can result in an imbalance of work across Writers,
with some Writers idle and others struggling to process a
long queue of work. This imbalance can destabilize the
whole pipeline and lower total throughput.

To address this problem, we must effectively com-
municate information about the sizes of Writers’ work
queues to upstream stages. We do this by creating a pool
of write tokens. Every write token is assigned a single
“parent” Writer. We assign parent Writers in round-robin
order to tokens as the tokens are created and create a
number of tokens equal to the number of WriterBuffers.
When the LogicalDiskDistributor has buffered enough
LDBuffers so that one or more of its logical disks is
above the minimum write threshold (5MB), the Logical-
DiskDistributor will query the write token pool, passing
it a set of Writers for which it has enough data. If a write
token is available for one of the specified Writers in the
set, the pool will return that token, otherwise it will signal
that no tokens are available. The LogicalDiskDistributor
is required to pass a token for the target Writer along with

its LDBuffer list to the next stage, This simple mech-
anism prevents any Writer’s work queue from growing
longer than its “fair share” of the available WriterBuffers
and provides reverse feedback in the pipeline without
adding any new architectural features.

4.6 System Call Behavior
In the construction of any large system, there are always
idiosyncrasies in performance that must be identified and
corrected. For example, we noticed that the sizes of ar-
guments to Linux write() system calls had a dramatic
impact on their latency; issuing many small writes per
buffer often yielded more performance than issuing a sin-
gle large write. One would imagine that providing more
information about the application’s intended behavior to
the operating system would result in better management
of underlying resources and latency but in this case, the
opposite seems to be true. While we are still unsure of
the cause of this behavior, it illustrates that the perfor-
mance characteristics of operating system services can
be unpredictable and counter-intuitive.

5 Evaluation
We now evaluate TritonSort’s performance and scalabil-
ity under various hardware configurations.

5.1 Evaluation Environment
We evaluated TritonSort on a 52 node cluster of HP
DL380G6 servers, each with two Intel E5520 CPUs
(2.27 GHz), 24 GB of memory, and 16 500GB 7,200
RPM 2.5” SATA drives. Each hard drive is configured
with a single XFS partition. Each XFS partition is con-
figured with a single allocation group to prevent file frag-
mentation across allocation groups, and is mounted with
the noatime, attr2, nobarrier, and noquota
flags set. Each server has two HP P410 drive controllers
with 512MB on-board cache, as well as a Myricom 10
Gbps network interface. The network interconnect we
use is a 52-port Cisco Nexus 5020 datacenter switch. The
servers run Linux 2.6.35.1, and our implementation of
TritonSort is written in C++.

5.2 Comparison to Alternatives
The 100TB Indy GraySort benchmark was introduced in
2009, and hence there are few systems against which we
can compare TritonSort’s performance. The most recent
holder of the Indy GraySort benchmark, DEMSort [18],
sorted slightly over 100TB of data on 195 nodes at a rate
of 564 GB per minute. TritonSort currently sorts 100TB
of data on 52 nodes at a rate of 916 GB per minute, a
factor of six improvement in per-node efficiency.

11

Intermediate Disk Logical Disks Phase 1 Phase 1 Average Write
Speed (RPM) Per Physical Disk Throughput (MBps) Bottleneck Stage Size (MB)

7200 315 69.81 Writer 12.6
7200 158 77.89 Writer 14.0
15000 158 79.73 LogicalDiskDistributor 5.02

Table 2: Effect of increasing speed of intermediate disks on a two node, 500GB sort

5.3 Examining Changes in Balance

We next examine the effect of changing the cluster’s con-
figuration to support more memory or faster disks. Due
to budgetary constraints, we could not evaluate these
hardware configurations at scale. Evaluating the perfor-
mance benefits of SSDs is the subject of future work.

In the first experiment, we replaced the 500GB,
7200RPM disks that are used as the intermediate disks in
phase one and the input disks in phase two with 146GB,
15000RPM disks. The reduced capacity of the drives
necessitated running an experiment with a smaller input
data set. To allow space for the logical disks to be pre-
allocated on the intermediate disks without overrunning
the disks’ capacity, we decreased the number of logical
disks per physical disk by a factor of two. This doubles
the amount of data in each logical disk, but the experi-
ment’s input data set is small enough that the amount of
data per logical disk does not overflow the logical disk’s
maximum size.

Phase one throughput in these experiments is slightly
lower than in subsequent experiments because the 30-35
seconds it takes to write the last few bytes of each logical
disk at the end of the phase is roughly 10% of the total
runtime due to the relatively small dataset size.

The results of this experiment are shown in Table 2.
We first examine the effect of decreasing the number of
logical disks without increasing disk speed. Decreas-
ing the number of logical disks increases the average
length of LDBuffer chains formed by the LogicalDisk-
Distributor; note that most of the time, full WriterBuffers
(14MB) are written to the disks. In addition, halving the
number of logical disks decreases the number of external
cylinders that the logical disks occupy, decreasing maxi-
mal seek latency. These two factors combine together to
net a significant (11%) increase in phase one throughput.

The performance gained by writing to 15000 RPM
disks in phase one is much less pronounced. The main
reason for this is that the increase in write speed causes
the Writers to become fast enough that the Logical-
DiskDistributor exposes itself as the bottleneck stage.
One side-effect of this is that the LogicalDiskDistributor
cannot populate WriterBuffers as fast as they become
available, so it reverts to a pathological case in which
it always is able to successfully retrieve a write token
and hence continuously writes minimally-filled (5MB)

RAM Per Phase 1 Average Write
Node (GB) Throughput (MBps) Size (MB)

24 73.53 12.43
48 76.45 19.21

Table 3: Effect of increasing the amount of memory per
node on a two node, 2TB sort

Figure 11: Throughput when sorting 1 TB per node as
the number of nodes increases

buffers. Creating a LogicalDiskDistributor stage that dy-
namically adjusts its write size based on write token re-
trieval success rate is the subject of future work.

In the next experiment, we doubled the RAM in two
of the machines in our cluster and adjusted TritonSort’s
memory allocation by doubling the size of each Writer-
Buffer (from 14MB to 28MB) and using the remain-
ing memory (22GB) to create additional LDBuffers. As
shown in Table 3, increasing the amount of memory al-
lows for the creation of longer chains of LDBuffers in the
LogicalDiskDistributor, which in turn causes write sizes
to increase. The increase in write size is not linear in
the amount of RAM added; this is likely because we are
approaching the point past which larger writes will not
dramatically improve write throughput.

5.4 TritonSort Scalability

Figure 11 shows TritonSort’s total throughput when sort-
ing 1 TB per node as the number of nodes increases from
2 to 48. Phase two exhibits practically linear scaling,
which is expected since each node performs phase two
in isolation. Phase one’s scalability is also nearly linear;
the slight degradation in its performance at large scales

12

is likely due to network variance that becomes more pro-
nounced as the number of nodes increases.

6 Discussion and Future Work
In this section, we discuss our system and present direc-
tions for future work.

6.1 Supporting More General Sorting
Two assumptions that we make in our design are that tu-
ples are uniform in size, and that they are uniformly and
identically distributed across the input files. TritonSort
can be extended to support non-uniform tuple sizes by
extending the tuple data structure to keep key and value
lengths. The most major modification that this will ne-
cessitate will be supporting the in-memory sort of keys in
phase two, which will require modifications to the phase
two Sorter stage. To support the non-uniform distribution
of keys across input files, we plan to implement a new
phase that will operate before TritonSort begins in which
a random small subset of the input data is scanned, de-
termining a histogram of the key distribution. Using this
empirical distribution, we will determine a hash function
that spreads tuples across nodes as uniformly as possible.

6.2 Automated Performance Tuning
In the current TritonSort prototype, the sizes of individ-
ual buffers, the number of buffers of each type, and the
number of workers implementing each stage are deter-
mined manually. Key to supporting more general hard-
ware configurations and more general DISC applications
is the ability to determine these quantities automatically
and dynamically. This automatic selection will need to
be performed both statically at design time, and dynam-
ically during runtime based on observed conditions. A
stage’s performance on synthetic data in isolation pro-
vides a good upper-bound on its real performance and
makes choosing between different implementations eas-
ier, but any such synthetic analysis does not take runtime
conditions such as CPU scheduling and cache contention
into account. Therefore, some manner of online learning
algorithm will likely be necessary for the system to de-
termine a good configuration at scale.

6.3 Incorporating SSDs into TritonSort
To achieve nearly sequential-speed throughput to the
disks, writes must be large. However, limited per-node
memory capacity and high memory cost makes it hard
to allocate more than 25MB of memory to each Writer-
Buffer. Here, we discuss a possible use of SSDs to pro-
vide high write speeds with much smaller buffers.

If we were to add three 80GB SSDs to each machine,
we could setup a pipeline in which these SSDs are di-
vided between the eight Writers, so that each Writer has

30 GB of SSD space. The LogicalDiskDistributor passes
data for each logical disk to the Writer stage in small
chunks, where Writers write them to the SSDs. Assum-
ing 315 logical disks per Writer, this gives each logical
disk 95 MB of space on the SSD. Because the SSD can
handle such a large number of IOPS, there is no penalty
for small writes as there is with standard hard drives.
Once 80 MB of data is written to a single logical disk
on the SSDs, the Writer initiates a sendfilev() system
call that causes a sequential DMA transfer of that data
from the SSD to the appropriate intermediate disk. This
should lower our memory requirements to 24 GB, while
permitting extremely large writes. This approach relies
on two features: significant PCI bandwidth to support
parallel transfers to the SSDs, and an SSD array present
in the node able to provide high streaming bandwidth to
the SSDs; we will need such an array to simultaneously
support over 640 MBps of parallel writes and 640 MBps
of parallel reads to fully utilize the disks.

7 Related Work
The Datamation sorting benchmark[5] initially measured
the elapsed time to sort one million records from disk
to disk. As hardware has improved, the number of
records has grown to its current level of 100TB. Over
the years, numerous authors have reported the perfor-
mance of their sorting systems, and we benefit from their
insights[18, 15, 21, 6, 17, 16]. We differ from previous
sort benchmark holders in that we focus on maximizing
both aggregate throughput and per-node efficiency.

Achieving per-resource balance in a large-scale data
processing system is the subject of a large volume of
previous research dating back at least as far as 1970.
Among the more well-known guidelines for building
such systems are the Amdahl/Case rules of thumb for
building balanced systems [3] and Gray and Putzolu’s
“five-minute rule” [13] for trading off memory and I/O
capacity. These guidelines have been re-evaluated and
refreshed as hardware capabilities have increased.

NOWSort[6] was the first of the aforementioned sort-
ing systems to run on a shared-nothing cluster. NOWSort
employs a two-phase pipeline that generates multiple
sorted runs in the first phase and merges them together in
the second phase, a technique shared by DEMSort[18].
An evaluation of NOWSort done in 1998[7] found that
its performance was limited by I/O bus bandwidth and
poor instruction locality. Modern PCI buses and multi-
core processors have largely eliminated these concerns;
in practice, TritonSort is bottlenecked by disk bandwidth.

TritonSort’s staged, pipelined dataflow architecture is
inspired in part by SEDA[20], a staged, event-driven
software architecture that decouples worker stages by in-
terposing queues between them. Other DISC systems
such as Dryad [14] export a similar model, although

13

Dryad has fault-tolerance and data redundancy capabili-
ties that TritonSort does not currently implement.

We are further informed by lessons learned from par-
allel database systems. Gamma[10] was one of the first
parallel database systems to be deployed on a shared-
nothing cluster. To maximize throughput, Gamma em-
ploys horizontal partitioning to allow separable queries
to be performed across many nodes in parallel, an ap-
proach that is similar in many respects to our use of log-
ical disks. TritonSort’s Sender-Receiver pair is similar
to the exchange operator first introduced by Volcano[12]
in that it abstracts data partitioning, flow control, paral-
lelism and data distribution from the rest of the system.

8 Conclusions
In this work, we describe the hardware and software
architecture necessary to build TritonSort, a highly ef-
ficient, pipelined, stage-driven sorting system designed
to sort tens to hundreds of TB of data. Through care-
ful management of system resources to ensure cross-
resource balance, we are able to sort tens of GB of data
per node per minute, resulting in 916 GB/min across only
52 nodes. We believe the work holds a number of lessons
for balanced system design and for scale-out architec-
tures in general and will help inform the construction of
more balanced data processing systems that will bridge
the gap between scalability and per-node efficiency.

9 Acknowledgments
This project was supported by NSF’s Center for Inte-
grated Access Networks and NSF MRI #CNS-0923523.
We’d like to thank Cisco Systems for their support of this
work. We’d like to acknowledge Stefan Savage for pro-
viding valuable feedback concerning network optimiza-
tions, and thank our shepherd Andrew Birrell and the
anonymous reviewers for their feedback and suggestions.

References
[1] A. Aggarwal and J. S. Vitter. The input/output com-

plexity of sorting and related problems. CACM,
1988.

[2] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Sridha-
ran. Data Center TCP (DCTCP). In SIGCOMM,
2010.

[3] G. Amdahl. Storage and I/O Parameters and Sys-
tem Potential. In IEEE Computer Group Confer-
ence, 1970.

[4] E. Anderson and J. Tucek. Efficiency matters! In
HotStorage, 2009.

[5] Anon et al. A Measure of Transaction Processing
Power. Datamation, 1985.

[6] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, D. E.
Culler, J. M. Hellerstein, and D. A. Patterson. High-
performance sorting on networks of workstations.
In SIGMOD, 1997.

[7] R. Arpaci-Dusseau, A. Arpaci-Dusseau, D. Culler,
J. Hellerstein, and D. Patterson. The architectural
costs of streaming I/O: A comparison of worksta-
tions, clusters, and SMPs. In HPCA, pages 90–101,
1998.

[8] R. E. Bryant. Data-Intensive Supercomputing: The
Case for DISC. Technical Report CMU-CS-07-
128, CMU, 2007.

[9] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. In OSDI, 2004.

[10] D. DeWitt, S. Ghandeharizadeh, D. Schneider,
A. Bricker, H.-I. Hsiao, and R. Rasmussen. The
Gamma Database Machine Project. TKDE, 1990.

[11] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
Google file system. In SOSP, 2003.

[12] G. Graefe. Volcano-an extensible and parallel query
evaluation system. TKDE, 1994.

[13] J. Gray and G. R. Putzolu. The 5 Minute Rule
for Trading Memory for Disk Accesses and The 10
Byte Rule for Trading Memory for CPU Time. In
SIGMOD, 1987.

[14] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fet-
terly. Dryad: distributed data-parallel programs
from sequential building blocks. In EuroSys, 2007.

[15] B. C. Kuszmaul. TeraByte TokuSampleSort, 2007.
http://sortbenchmark.org/tokutera.pdf.

[16] C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and
D. Lomet. Alphasort: A cache-sensitive parallel
external sort. In VLDB, 1995.

[17] C. Nyberg, C. Koester, and J. Gray. NSort: a Par-
allel Sorting Program for NUMA and SMP Ma-
chines, 1997.

[18] M. Rahn, P. Sanders, J. Singler, and T. Kieritz.
DEMSort – Distributed External Memory Sort,
2009. http://sortbenchmark.org/demsort.pdf.

[19] Sort Benchmark Home Page. http://sortbenchmark.
org/.

[20] M. Welsh, D. Culler, and E. Brewer. SEDA: an
architecture for well-conditioned, scalable internet
services. In SOSP, 2001.

[21] J. Wyllie. Sorting on a Cluster Attached
to a Storage-Area Network, 2005. http://
sortbenchmark.org/2005 SCS Wyllie.pdf.

[22] Apache hadoop. http://hadoop.apache.org/.
[23] Scaling Hadoop to 4000 nodes at Yahoo!

http://developer.yahoo.net/blogs/hadoop/2008/
09/scaling hadoop to 4000 nodes a.html.

14

