arXiv:2206.00789v1 [cs.OS] 1 Jun 2022

Integrating Unikernel Optimizations

in a General Purpose OS

Ali Raza Thomas Unger Matthew Boyd
Boston University Boston University Boston University
aliraza@bu.edu tommyu@bu.edu mcboyd@bu.edu
Eric Munson Parul Sohal Ulrich Drepper
Boston University Boston University Red Hat
munsoner@bu.edu psohal@bu.edu drepper@redhat.com
Richard Jones Daniel Bristot de Oliveira Larry Woodman
Red Hat Red Hat Red Hat

rjones@redhat.com

bristot@redhat.com

Iwoodman@redhat.com

Renato Mancuso Jonathan Appavoo Orran Krieger
Boston University Boston University Boston University
rmancuso@bu.edu jappavoo@bu.edu okrieg@bu.edu

Abstract

We explore if unikernel techniques can be integrated into a
general-purpose OS while preserving its battle-tested code, de-
velopment community, and ecosystem of tools, applications,
and hardware support. Our prototype demonstrates both a
path to integrate unikernel techniques in Linux and that such
techniques can result in significant performance advantages.
With a re-compilation and link to our modified kernel, applica-
tions show modest performance gains. Expert developers can
optimize the application to call internal kernel functionality
and optimize across the application/kernel boundary for more
significant gains. While only one process can be optimized,
standard scripts can be used to launch it, and other processes
can run alongside it, enabling the use of standard user-level
tools (prof, bash,...) and support for both virtual and physical
servers. The changes to the Linux kernel are modest (1250
LOC) and largely part of a configuration build target.

1 Introduction

There is growing evidence that the structure of today’s gen-
eral purpose operating systems is problematic for a number
of key use cases. For example, applications that require high-
performance I/O use frameworks like DPDK [1] and SPDK [2]
to bypass the kernel and gain unimpeded access to hardware
devices [13, 38]. In the cloud, client workloads are typically
run inside dedicated virtual machines, and a kernel designed
to multiplex the resources of many users and processes is
instead being replicated across many single-user, often single-
process, environments [41].

In response, there has been a resurgence of research sys-
tems exploring the idea of a libraryOS, or a unikernel, where
an application is linked with a specialized kernel and de-
ployed directly on virtual hardware [11]. Compared with

Linux, unikernels have demonstrated significant advantages
in boot time [17, 24], security [42], resource utilization [8, 26],
and I/O performance [39].

As with any operating system, widespread adoption of a
unikernel will require enormous and ongoing investment by
alarge community. Justifying this investment is difficult since
unikernels target only niche portions of the broad use-cases of
general-purpose OSes. In addition to their intrinsic limitation
as single application environments, with few exceptions, ex-
isting unikernels support only virtualized environments and,
in many cases, only run on a single processor core. Moreover,
they do not support accelerators (e.g., GPUs and FPGAs) that
are increasingly critical to achieving high performance in a
post Dennard scaling world.

Some systems have demonstrated that it is possible to cre-
ate a unikernel that re-uses much of the battle-tested code
of a general-purpose OS and supports a wide range of ap-
plications. Examples include NetBSD based Rump Kernel
[15], Windows based Drawbridge [34] and Linux based Linux
Kernel Library (LKL)[35]. These systems, however, require
significant changes to the general-purpose OS, resulting in
a fork of the codebase and community. As a result, ongoing
investments in the base operating system are not necessarily
applicable to the forked unikernel.

To avoid the investment required for a different OS, the
recent Lupine [20] and X-Containers [40] projects explore ex-
ploiting Linux’s innate configurability to enable application-
specific customizations. These projects avoid the hardware
overhead of system calls between user and kernel mode, but
to avoid code changes to Linux, they do not explore deeper op-
timizations. Essentially these systems preserve the boundary
between the application and the underlying kernel, giving

up on any unikernel performance advantages that depend on
linking the application and kernel code together.

The Unikernel Linux (UKL) project started as an effort to
exploit Linux’s configurability to try to create a new uniker-
nel in a fashion that would avoid forking the kernel. If this is
possible, we hypothesized that we could create a unikernel
that would support a wide range of Linux’s applications and
hardware, while becoming a standard part of the ongoing in-
vestment by the Linux community. Our experience has led us
to a different, more powerful goal; enabling a kernel that can
be configured to span a spectrum between a general-purpose
operating system and a pure unikernel.

At the general-purpose end of the spectrum, if all UKL con-
figurations are disabled, a standard Linux kernel is generated.
The simplest base model configuration of UKL supports many
applications, albeit with only modest performance advan-
tages. Like unikernels, a single application is statically linked
into the kernel and executed in privileged mode. However,
the base model of UKL preserves most of the invariants and
design of Linux, including a separate page-able application
portion of the address space and a pinned kernel portion, dis-
tinct execution modes for application and kernel code, and
the ability to run multiple processes. The changes to Linux
to support the UKL base model are modest (~550 LoC), and
the resulting kernel support all hardware and applications
of the original kernel as well as the entire Linux ecosystem
of tools for deployment and performance tuning. UKL base
model shows a modest 5% improvement in syscall latency.

Once an application is running in the UKL base model, a
developer can move along the spectrum towards a uniker-
nel by 1) adapting additional configuration options that may
improve performance but will not work for all applications,
and/or 2) modifying the applications to directly invoke ker-
nel functionality. Example configuration options we have ex-
plored avoid costly transition checks between application and
kernel code, use simple return (rather than iret) from page
faults and interrupts, and use shared stacks for application
and kernel execution etc. Application modifications can, for
example, avoid scheduling and exploit application knowledge
toreduce the overhead of synchronization and polymorphism.
Experiments show up to 83% improvement in syscall latency
and substantial performance advantages for real workloads,
e.g., 26% improvement in Redis throughput while improving
tail latency by 22%. A latency sensitive workloads show 100
times improvement. The full UKL patch to Linux, including
the base model and all configurations, is 1250 LoC.

Contributions of this work include:

1. An existence proof that unikernel techniques can be
integrated into a general-purpose OS in a fashion that
does not need to fragment/fork it.

2. A demonstration that a single kernel can be adopted
across a spectrum between a unikernel and a general
purpose OS.

3. A demonstration that performance advantages are pos-
sible; applications achieve modest gains withno changes,
and incremental effort can achieve more significant
gains.

We discuss our motivations and goals for this project in Sec-
tion 2, and ur overall approach to bring unikernel techniques
to Linux in Section 3. Section 4 describes key implementation
details. In Section 5, we evaluate and discuss the implications
of the current design and implementation. Finally, Section 6
and 7 contrast UKL to previous work and describe research
directions that this work enables.

2 Motivation & Goals

UKL seeks to explore a spectrum between a general-purpose
operating system and a unikernel in order to: (1) enable uniker-
nel optimizations demonstrated by earlier systems while pre-
serving a general-purpose operating system’s (2) broad ap-
plication support, (3) broad hardware support, and (4) the
ecosystem of developers, tools and operators. We motivate
and describe each of these four goals.

2.1 Unikernel optimizations

Unikernels fundamentally enable optimizations that rely on
linking the application and kernel together in the same ad-
dress space. Example optimizations that previous systems
have adopted include 1) avoiding ring transition overheads
[20]; 2) exploiting the shared address space to pass point-
ers rather than copying data [39]; 3) exploiting fine-grained
control over scheduling decisions, e.g., deferring preemption
in latency-sensitive routines; 4) enabling interrupts to be ef-
ficiently dispatched to application code [39]; 5) exploiting
knowledge of the application to remove code that is never
used [24]; 6) employing kernel-level mechanisms to optimize
locking and memory management [16], for instance, by us-
ing Read-Copy-Update (RCU) [28], per-processor memory,
and DMA-aided data movement; and 7) enabling compiler,
link-time, and profile-driven optimizations between the ap-
plication and kernel code.

Ultimately our goal with UKL is to explore the full spectrum
between general purpose and highly specialized unikernels.
For this paper, our goal is to enable applications to be linked
into the Linux kernel, and explore what, if any, improvements
can be achieved by modest changes to the application and
general-purpose system.

2.2 Application support

One of the fundamental problems with unikernels is the lim-
ited set of applications that they support. By their nature,
unikernels only enable a single process, excluding any applica-
tion that requires helper processes, scripts, etc. Moreover, the
limited set of interfaces typically requires substantial porting
effort for any application, and library that the application uses.

UKL seeks to enable unikernel optimizations to be broadly
applicable. Our goal is to enable any unmodified Linux appli-
cation and library to use UKL, with a re-compilation, aslong as
only one application needs to be linked into the kernel. Once
the application is functional, the developer can incrementally
enable unikernel optimizations/configurations. A large set
of applications should be able to achieve some gain on the
general-purpose end of the spectrum, while a much smaller
set of applications will be able to achieve more substantial
gains as we move toward the unikernel end.

2.3 Hardware support

Another fundamental problem with unikernels is the lack
of support for physical machines and devices. While recent
unikernel research has mostly focused on virtual systems,
some recent [14, 39] and previous [4, 9, 11, 21, 31] systems
have demonstrated the value of per-application specialized
operating systems on physical machines. Unfortunately, even
these systems were limited to very specific hardware plat-
forms with a restricted set of device drivers. This precludes
a wide range of infrastructure applications (e.g., storage sys-
tems, schedulers, networking toolkits) that are typically de-
ployed bare-metal. Moreover, the lack of hardware support is
anincreasing problem in a post-Dennard scaling world, where
performance depends on taking advantage of the revolution
of heterogeneous computing,.

Our goal with UKL is to provide a unikernel environment
capable of supporting the complete HCL of Linux, allowing
applications to exploit any hardware (e.g. GPUs, TPUs, FP-
GAs) enabled in Linux. Our near term goal, while supporting
all Linux devices, is to focus on x86-64 systems. Much like
KVM became a feature of Linux on x86 and was then ported to
other platforms; we expect that, if UKL is accepted upstream,
communities interested in non-x86 architectures will take on
the task of porting and optimizing UKL for their platforms.

2.4 Ecosystem

While application and hardware support are normally thought
of as the fundamental barriers for unikernel adoption, the
problem is much larger. Linux has a huge developer commu-
nity, operators that know how to configure and administer
it, a massive body of battle-tested code, and a rich set of tools
to support functional and performance debugging and con-
figuration.

Our goal with UKL is, while enabling developers to adopt
extreme optimizations that are inconsistent with the broader
ecosystem, the entire ecosystem should be preserved on the
general-purpose end of the spectrum. This means operational
as well as functional and performance debugging tools should
just work. Standard application and library testing systems
should, similarly, just work.! Most of all, the base changes

n fact, we used a great deal of glibc and libpthread’s internal unit tests
to identify and fix problems within UKL.

needed to enable UKL need to be of a nature that they don’t
break assumptions of the battle tested Linux code, can be ac-
cepted by the community, and can be tested and maintained
as development on the system progresses.

3 Design

UKL’s base model enables an application to be linked into the
kernel while preserving the (known and unknown) invariants
and assumptions of applications and Linux. Once an applica-
tion runs on UKL, an expert programmer can then adopt spe-
cific unikernel optimizations by choosing (additional) configu-
ration options and/or modifying the application to invoke ker-
nel functionality directly. We first describe the base model and
then some of the unikernel optimizations we have explored.

3.1 Base Model

UKL is similar to many unikernels in that it involves modifi-
cations to a base library and a kernel, and has a build process
that enables a single application to be statically linked with
kernel code to create a bootable kernel. In the case of UKL, the
modifications are to glibc and the Linux kernel. As a result
of the wide variety of architectures supported by glibc and
Linux, it was possible to introduce the majority of changes we
required in a new UKL target architecture; most of the hooks
we require to override code already exist in common code.
The base model of UKL differs from unikernels in 1) support
for multiple processes, 2) address space layout, and 3) in main-
taining distinct execution models for applications and kernel.

Support for multiple processes: One key area where UKL
differs from unikernels is that, while only one application can
be linked into the kernel, UKL enables other applications to
run unmodified on top of the kernel. Support for multiple
processes is critical to support many applications that are log-
ically composed of multiple processes (§2.2), standard configu-
ration and initialization scripts for device bring-up (§2.3), and
the tooling used for operations, debugging and testing (§2.4).

Addpress space layout: UKL preserves the standard Linux
virtual address space split between application and kernel.
The application heap, stacks, and mmapped memory regions
are all created in the user portion of the address space. Ker-
nel data structures (e.g., task structs, file tables, buffer cache)
and kernel memory management services (e.g., vmalloc and
kmalloc) all use the kernel portion of the address space. Since
the kernel and application are compiled and linked together,
the application (and kernel) code and data are all allocated in
the kernel portion of the virtual address space.

We found it necessary to adapt this address space layout
because Linux performs a simple address check to see if an
address being accessed is pinned or not; modifying this layout
would have resulted in changes that would be difficult to get
accepted (2.4). Unfortunately, this layout has two negative

implications for application compatibility. First, (see 4) ap-
plications have to be compiled with different flags to use the
higher portion of the address space. Second, it may be prob-
lematic for applications with large initialized data sections
that in UKL are pinned.

Execution models: Even though the application and ker-
nel are linked together, UKL differs from unikernels in provid-
ing fundamentally different execution models for application
and kernel code. Application code uses large stacks (allocated
from the application portion of the address space), is fully pre-
emptable, and uses application-specific libraries. This model
is critical to enabling a large set of applications to be supported
without modification (2.2).

Kernel code, on the other hand, runs on pinned stacks,
accesses pinned data structures, and uses kernel implemen-
tation of common routines. This model was required to avoid
substantial modifications to Linux that would not have been
accepted by the community (2.4).

On transition between the execution models, UKL performs
the same entry and exit code of the Linux kernel, with the
difference that: 1) transitions to kernel code are done with a
procedure call rather than a syscall, and 2) transitions from
the kernel to application code are done via a ret rather than
a sysret or iret. This transition code includes changing be-
tween application and kernel stacks, RCU handling, checking
if the scheduler needs to be invoked, and checking for sig-
nals. In addition, it includes setting a per-thread uk1_mode to
identify the current mode of the thread so that subsequent
interrupts, faults and exceptions will go through normal tran-
sition code when resuming interrupted application code.

3.2 Unikernel Optimizations

While preserving existing execution modes enables most ap-
plications to run with no modifications on UKL, the perfor-
mance advantages of just avoiding syscall, sysret, and
iret operations are, as expected, modest. However, once an
application is linked into the kernel, different unikernel opti-
mizations are possible. First, a developer can apply a number
of configuration options that may improve performance. Sec-
ond, a knowledgeable developer? can improve performance
by modifying the application to call internal kernel routines
and violating, in a controlled fashion, the normal assumptions
of kernel versus application code.

3.2.1 Configuration Options. Here we discuss the con-
figuration options that have the biggest impact.

Bypassing entry/exit code: On Linux, whenever control
transitions between application and kernel through system

ZExpertise is needed to perform these customizations. For example, if an
application calls an internal kernel routine passing a pointer to an application
data structure that resides on a page that has not yet been accessed/allocated,
the kernel will fail. We are just starting to develop a body of use cases and
examples that should inform developers on the care they should take for
different optimizations.

Config Feature

UKL_BYP Bypass entry exit code

UKL_NSS Avoid stack switches

UKL_NSS_PS | Avoid stack switches with pinned user

stacks

UKL_RET Replace iret with ret
UKL_PF_DF | Use dedicated stack on double faults
UKL_PF_SS Use dedicated stack on all faults

Table 1. UKL Configuration options

calls, interrupts, and exceptions, some entry and exit code is
executed, and it is expensive. We introduced a configuration
(UKL_BYP) that allows the application, on a per-thread basis,
to tell UKL to bypass entry and exit code for some number of
transitions between application and kernel code. As we will
see, this model results in significant performance gains for
applications that make many small kernel requests.

A developer can invoke an internal kernel routine directly,
where no automatic transition paths exist, e.g., invoking
vmalloc to allocate pinned pre-allocated kernel memory
rather than normal application routines. The use of such mem-
ory not only avoids subsequent faults but also results in less
overhead when kernel interfaces have to copy data to and
from that memory.

Avoiding stack switches: Linux runs applications on dy-
namically sized user stacks, and kernel code on fixed-sized,
pinned kernel stacks. This stack switch, every time kernel
functionality is invoked, breaks the compiler’s view and lim-
its cross-layer optimizations, e.g., link-time optimizations,
etc. The developer can select between two UKL configura-
tions that avoid stack switching(UKL_NSS and UKL_NSS_PS);
where (see implementation) each is appropriate for a different
class of application. Currently, LTO in Linux is only possible
with CLANG and glibc, and some other libraries can only be
compiled with gcc. There are efforts underway in the commu-
nity to both enable glibc to be compiled with CLANG and to
enable Linux LTO with gcc. We hope by the time this paper is
published, we will be able to demonstrate the results of LTO
with one or the other of these.

ret versus iret: Linux uses iret when returning from
interrupts, faults and exceptions. iret can be an expensive
instruction when compared to a simple ret instruction, but
it makes sense when control has to be returned to user mode
because it guarantees atomicity while changing the privilege
level, updating instruction and stack pointers, etc. UKL_RET
configuration option uses ret and ensures atomicity by en-
abling interrupts only after returning to the application stack.

3.2.2 Application Modifications. Along with the above
mentioned configurations, applications can be modified to
gain further performance benefits. Developers can, by taking
advantage of application knowledge, explore deeper optimiza-
tions. For example, they may be able to assert that only one

thread is accessing a file descriptor and avoid costly locking
operations. As another example, they may know a priori that
an application is using TCP and not UDP and that a particular
write operation in the application will always be to a TCP
socket, avoiding the substantial overhead of polymorphism
in the kernel’s VFS implementation. As we optimize specific
operations, we are building up a library of helper functions
that cache and simplify common operations.

UKL base model ensures that the application and kernel exe-
cution models stay separate, with proper transitions between
the two. But applications may find it beneficial to run under
the kernel execution model, even for short times. Applications
cantoggle a per-thread flag which switches them to the kernel-
mode execution, allowing application threads to be treated as
kernel threads, so they won’t be preempted. This can be used
as a ‘run-to-completion’ mode where performance-critical
paths of the application can be accelerated.

4 Implementation

The size of the UKL base model patch to Linux kernel 5.14 is
approximately 550 lines and the full UKL patch (base model
plus all the configuration options mentioned in Table 1) is 1250
lines. The vast majority of these changes are target-specific,
i.e, in the x86 architecture directory.

UKL takes advantage of the existing kernel Kconfig and
glibc build systems. These allow target-specific functional-
ity to be introduced that doesn’t affect generic code or code
for other targets. All code changes made in UKL base model
and subsequent versions are wrapped in macros which can
be turned on or off through kernel and glibc build time con-
fig options. All the changes required are compiled out when
Linux and glibc are configured for a different target.

We found that UKL patch can be so small due to many favor-
able design decisions by the Linux community. For instance,
Linux’s low level transition code has recently undergone
massive rewritings to reduce assembly code and move func-
tionality to C language. This has allowed UKL transition code
changes to be localized to that assembly code. Further, the
ABI for application threads dedicates a register (f's to point to
thread-local storage, while kernel threads have no such con-
cept but instead dedicate a register (gs to point to processor-
specific memory. If a register was used by both Linux and
glibc, UKL would have had to add code to save and restore
it on transitions; instead, both registers can be preserved.

In addition to the kernel changes, about 4,700 lines of code
are added or changed in glibc. These number is inflated be-
cause according to the glibc development approach, any file
that needs to be modified has to be first copied to a new sub-
directory and then modified. All the UKL changes are well
contained in a separate directory. At build time, this directory
is searched first for a target file before searching the default
location.

Building UKL:. UKL code in Linux (protected by #ifdef's)
is enabled by building with specific Kconfig options. UKL re-
quires the application’s and the needed user libraries’ code to
be compiled and statically linked with the kernel, so dynam-
ically loadable system libraries cannot be used. All code must
be built with two special flags. The first flag disables the red
zone (-mno-red-zone). Hermitux [33] takes the design ap-
proach of forcing all faults, interrupts, and exceptions to use
dedicated stacks through the Intel interrupt stack table (IST)
mechanism. This allows the red zone to remain safe while
all interrupts etc., are serviced on dedicated kernel stacks.
While we could have adopted this technique into UKL, it
would have required drastic code changes. The second flag
(-mcmodel=kernel) generates the code for kernel memory
model. This is needed because application code has to link
with kernel code and be loaded in the highest 2GB of address
space instead of the lower 2GB that is the default for user code.

The modified kernel build system combines the applica-
tion object files, libraries, and the kernel into a final vmlinux
binary which can be booted bare-metal or virtual. To avoid
name collisions, before linking the application and kernel
together, all application symbols (including library ones) are
prefixed with uk1_. Kernel code typically has no notion of
thread-local storage or C++ constructors, so the kernel’s
linker script is modified to link with user-space code and
ensure that thread-local storage and C++ constructors work.
Appropriate changes to kernel loader are also made to load
the new ELF sections along with the kernel.

Changes to execve: We modified execve to skip certain
steps (like loading the application binary, which does not exist
in UKL), but most steps run unmodified. Of note, execve will
jump straight to the glibc entry point when running the UKL
thread instead of trying to read the application binary for an
entry point. glibc initialization happens almost as normal,
but when initializing thread-local storage, changes had to be
made to allow glibc to read symbols set by the kernel linker
script instead of trying to read them from the (non-existent)
ELF binary. C++ constructors run in the same way as in a nor-
mal process. Command-line parameters to main are extracted
from a part of the Linux kernel command line, allowing these
to be changed without recompilation.

Transition between application and kernel code: On
transitions between application and kernel code, the normal
entry and exit code of the Linux kernel is executed, with the
only change being that transitions code use call/ret instead
of syscall/sysret.

The different configurations of UKL, mentioned in Ta-
ble 1 involve changes to the transitions between applica-
tion and kernel code. All changes were made through Linux

(SYSCALL_DEFINE)macrosandglibc (INLINE_SYSCALL) macros.

For example, to enable UKL_BYP mode, we generate a stub in
the kernel SYSCALL_DEFINE macro that is invoked by the cor-
responding glibc macro. We use a per-thread flag ((ukl_byp)

to identify if the bypass optimization is turned on or off for
that thread.

Linux tracks whether a process is running in user mode
or kernel mode through the value in the CS register, but UKL
is always in kernel mode (except for the normal user-space,
which runs in user mode). So the UKL thread tracks this in
a flag (ukl_mode) in the kernel’s thread control block i.e.,
task_struct.

The UKL_RET configuration option replaces iret after ap-
plication code is interrupted by a page fault or interrupt with
aret. The challenge is that we cannot enable interrupts until
we have switched from the kernel stack to the application
stack, or the system might land in an undefined state. To do
so, we first copy the return address and user flags from the
current stack to the user stack. Then we switch to the user
stack, and this ensures that even if interrupts are enabled now,
we are on the correct stack where we can return to again. We
then pop the flags, and then do a simple ret because return
address is already on stack. We make sure to restore user flags
at the very end, because restoring user flags would turn in-
terrupts on. This has allowed us performance improvement
while also ensuring correct functionality.

Enabling shared stacks: In the UKL base model, a stack
switch occurs between user and kernel stack when transition
between user and kernel code happens. To enable link-time
optimizations, it is important to avoid those transitions. The
UKL_NSS configuration option involves changes to the low
level transition code to avoid stack switch. While this works,
it limits how UKL can be deployed because it breaks the ex-
pectation that different processes can run alongside the UKL
application. To illustrate the problem, consider the case of an
inter-processor interrupt to another processor for TLB inval-
idation. In this case, Linux stores information on the current
process stack, which is a user stack if stack switching is turned
off. On the other processor, some non-UKL thread might be
running, which is interrupted by the IPI. Kernel will inherit
that other process’s page tables and then try to access the
information stored on the UKL thread’s user stack, essentially
trying to access user pages that might not be mapped in the
current page tables, resulting in a kernel panic. When this
configuration option is used, required tools and setup scripts
need to run before the UKL application runs, and clean up
scripts, etc., run after the UKL application finishes execution.

The inability to run concurrent processes alongside the
UKL application precluded a class of applications. So the
UKL_NSS_PS configuration option allocates large, fixed-sized
stacks in the kernel part of the address range. This allowed
multiple processes to run concurrently. This, however pre-
cluded a different class of applications, i.e., those which create
a large number of threads or forks, etc., which might exhaust
the kernel part of the address space.

Page-faults: If UKL_NSS configuration option is on, dead-
locks can occur. Imagine if some kernel memory management

code was being executed, e.g., mmap, the current thread must
have taken a lock on the memory control struct (nm_struct).
During the execution of that code, if a stack page fault occurs
(which is normal for user stacks), control moves to the page
fault handler, which then tries to take the lock of mm_struct
to read which virtual memory area (VMA) the faulting address
belongs to and how to handle it. Since the lock was already
taken, the page fault handler waits. But the lock will never be
given up because that same thread is in the page fault handler.
We solved this by saving a reference to user stack VMA when
a UKL thread or process is created. In case of page faults, while
user stacks are used throughout, we first check if the faulting
address is a stack address by comparing it against the address
range given in the saved VMA. If so, we know it’s a stack
address, and the code knows how to handle it without taking
any further lock. If not, we first take a lock to retrieve the
correct VMA and move forward normally.

In kernel mode, on a page fault, the hardware does not
switch to a fresh stack. It tries to push some state on its cur-
rent (user) stack. Since there is no stack left to push this state,
UKL gets a double fault. We fix this through the UKL_PF_DF
configuration option by causing the hardware to raise a dou-
ble fault and then checking, in the double fault handler, if the
fault is to a stack page, and if so, branch to the regular page
fault handler (double fault always gets a dedicated stack, so
it does not triple fault).

We also came up with the UKL_PF_SS configuration option
to solve this problem, i.e., by updating the IDT to ensure that
the page fault handler always switches to a dedicated stack
through the Interrupt Stack Table (IST) mechanism.

Clone and Fork: To create UKL threads, the user-space
pthread library runs pthread_create which further calls
clone. We modified this library to pass a new flag CLONE_UKL
to ensure the correct initial register state is copied into the
new task either from the user stack or kernel stack, depending
on whether the parent is configured to switch to kernel stack
or not.

5 Evaluation

After our experimental environment (§5.1), §5.2 discusses
our experience with UKL supporting the fundamental non-
performance goals of enabling Linux’s application support,
HCL, and ecosystem.

In Section 5.3 microbenchmarks are used to evaluate the
performance of UKL on simple system calls (§5.3.1), more
complex system calls (§5.3.2) and page faults (§5.3.3). We
find that, while the advantage of just avoiding the hardware
overhead of system calls is small, the advantage of adopting
unikernel optimizations is large for simple kernel calls (e.g.,
83%) and significant for page faults (e.g., 12.5%). Moreover,
the improvement is significant even for expensive kernel calls
that transfer 8KB of data (e.g., 24%).

In Section 5.4 we evaluate applying unikernel optimiza-
tions to both throughput (Redis §5.4.1, Memcached §5.4.2)
and latency bound (Secrecy §5.4.3) applications. We find that
configuration options provided by UKL can enable significant
throughput improvements (e.g., 12%) and a simple 10 line
change in Redis code results in more significant gains (e.g.,
26%). The results are even more dramatic for latency-sensitive
applications where configuration changes result in 15% im-
provement and a trivial application change enables a 100x
improvement in performance.

5.1 Experimental Setup

Experiments are run on Dell R620 servers configured with
128G of ram arranged as a single NUMA node. The servers
have two sockets, each containing an Intel Xeon CPU E5-2660
0 @ 2.20GHz, with 8 real cores per socket. The processors
are configured to disable Turbo Boost, hyper-threads, sleep
states, and dynamic frequency scaling. The servers are con-
nected through a 10Gb link and use Broadcom NetXtreme
I BCM57800 1/10 Gigabit Ethernet NICs. Experiments run
on multiple computers use identically configured machines
attached to the same top of rack switch to reduce external
noise. On the software side, we use Linux 5.14 kernel and
glibc version 2.31. Linux and different configurations of UKL
were built with same compile-time config options. We ran
experiments on virtual and physical hardware and got consis-
tent and repeatable results. In the interest of space, we only
report bare-metal numbers unless stated otherwise.

5.2 Linux application hardware & ecosystem

The fundamental goals of the UKL project are to integrate
unikernel optimizations without losing Linux’s broad support
for applications, hardware, and ecosystem. We discuss each
of these three goals in turn.

Application support: As expected, we have had no dif-
ficulty running any Linux application as normal user-level
processes on our modified kernel. We have used hundreds of
unmodified binaries running as normal user-level processes
without effort. That includes all the standard UNIX utilities,
bash, different profilers, perf, and eBPF tools.

Dozens of unmodified applications have been tested as op-
timization targets for UKL. These include Memcached [29],
Redis [36], Secrecy [22], a small TCP echo server, simple test
programs for C++ constructors and the STL, a complex C++
graph based benchmark suite [7], a performance benchmark
called LEBench [37], and a large number of standard glibc
and pthread unit test programs.

There are some challenges in getting some applications
running on UKL. First, as expected, one needs to be able to
re-compile and statically link both the application and all its
dependencies. Second, we have hit a number of programs
that by default invoke fork followed by exec e.g., Postgress,
and many that are dependent on the dynamic loader through

Project LoC | Files | SubSys | Outcome
Popcorn 7763 64 14 | Out of tree
NetGPU 3827 45 14 | Rejected
DAMON 3805 24 3 | Rejected
KML 3177 70 16 | Out of tree
BPFStruct 2639 32 10 | Accepted
BPFDump 2343 32 8 | Accepted
ArmMTE 1764 63 14 | Accepted
NFTOffload 1579 56 24 | Accepted
UKL 1250 33 10 | -

KRSI 1085 29 11 | Accepted
LoopFS 891 27 5 | Rejected
FSGSBASE 562 16 9 | Accepted
BPFDisp 501 11 9 | Accepted
ArmAsym 370 13 9 | Rejected
BPFSleep 315 23 9 | Accepted
IOURestrictions | 194 2 2 | Accepted
CapPerfMon 98 18 14 | Accepted

Table 2. Comparison of UKL patch to Kernel-Mode Linux
(KML) and a selection of Linux features described in Linux
Weekly News (LWN) articles in 2020. We show patch size,
files touched (how complex it is to reason about), subsystems
impacted (number of upstream kernel maintainers who need
toreview and approve it), and the current status of the change.

calls to dlopen and others.? Third, we have run into issues of
proprietary applications available in only binary form, e.g.,
user-level libraries for GPUs.

Hardware support: For hardware, we have not run into
any compatibility issues and have booted or kexeced to UKL
on five different x86-64 servers and virtualization platforms.
The scripts and tools used to deploy and manage normal Linux
machines were used for UKL deployments as well.

Ecosystem: Due to having a full-fledged userspace, we
have been able to run all the different applications, utilities,
and tools that can run on unmodified Linux. This has been
extremely critical in building UKL, i.e., we use all the debug-
ging tools and techniques available in Linux. We have been
able to profile UKL workloads with perf and able to identify
code paths that could be squashed for performance benefits
(see fig. 5).

The UKL patch size for the base model is around 550 lines,
and the full UKL patch with all the configurations is 1250 lines.
Since the patch is small and non-invasive, we are hopeful that
we can work with the Linux community towards upstream
acceptance.

Table 2 compares the UKL patch to Kernel-Mode Linux
(KML) and a selection of Linux features described in Linux

SUKL supports a modified fork, where initialized data (kernel page tables) are
not copy-on-write, but are shared across forks. Any applications depending
on exec, correct semantics of fork or the dynamic loader are not supported.

EE Linux B UKL BYP

800 -

4%

=]

o

o
!

Time (ns)
S
o
o

200 A

read write sendto recvfrom

getppid

Figure 1. Comparison of Linux, UKL base model, and UKL
with bypass configuration for simple system calls. With
modern hardware, the UKL advantage of avoiding the system
call overhead is modest (<5%). However, there appears to
be significant advantage for simple calls with BYP to avoid
transition checks between application and kernel code.

Weekly News (LWN) [23] articles in 2020. For comparison,
the KML[25] patch, used in the recent Lupine work, that runs
applications in kernel mode is 3177 LOC, a complexity that
has resulted in the patch not being accepted upstream. In
contrast, UKL both provides richer functionality than KML,
and is much simpler. This simplicity is due to three fortu-
itous changes since KML was introduced. First, UKL, takes
advantage of recent changes to the Linux kernel that make
the changes to assembly much less intrusive. Second, UKL
supports only x64-64, while KML was introduced at a time
when it was necessary to support i386 to be relevant. Third,
UKL does not deal with older hardware, like the i8259 PIC,
that had to be supported by KML.

5.3 Microbenchmarks

Unikernels offer the opportunity to dramatically reduce the
overhead of interactions between application and kernel code.
We evaluate how UKL optimizations impact the overhead
of simple system calls (§5.3.1), more expensive system calls
(85.3.2), and page faults (§5.3.3). Our results contradict recent
work that suggests that the advantages are modest; we see
that the reduction in overhead is larger (e.g., 90%) than previ-
ously reported and has a significant impact even for requests
with large payloads (e.g., 24% with 8KByte recvfrom()).

5.3.1 System call base performance. Figure 1, compares
the overhead of simple system calls between Linux, UKL’s
base model, and UKL_BYP. Results were gathered using the
(slightly modified* LEBench [37]) microbenchmark to mea-
sure the baselatency of getppid read, write, sendto, and recvfrom
(all with 1 byte payloads).

4We modified LEBench to use mmap instead of malloc to give repeatable
results, and to output raw numbers instead of just averages

— Linux —— UKL —— UKL_BYP
read() Latency
2.0 100%
>
G 15 - 75% é
é 1.0 7% F50% &
0, m
i 0.5 21% 20% 18%- 25% o
=}
0.0 : r . 0%
0 2048 4096 6144 8192
write() Latency
3 100%
2 :
321 F67% &
e &
E 1 19% F33% "
B ° 12% 11% K
0 ; ; . 0%
0 2048 4096 6144 8192
sendto() Latency
1.5 100%
2 :
3 1.0 -67% ¢
o - &
Eosg % 25% 23% F33% o
& 144 &
0.0 . . . 0%
0 2048 4096 6144 8192
recvirom() Latency
1.5 100%
_ g
g
3 1.0 F67% £
g 34% 2% &
= 057 > 25% ook 33% 5
11
)
0.0 . . . 0%
0 2048 4096 6144 8192
Bytes

Figure 2. Comparison of Linux, UKL base model, and UKL
with bypass configuration for four simple system calls. With
increasing payload for each system call, UKL shows modest
improvement over Linux. But there is a significant advantage
for UKL, which bypasses the entry and exit code (UKL_BYP).
Orange area shows percentage improvement of UKL_BYP
over Linux, which decreases as payload increases but is still
significant for 8KB payload.

We find that the advantage of the base model of UKL that

essentially replaces syscall/sysretinstructionswithcall/ret

is modest, i.e., less than 5%. However, the UKL BYP configu-
ration that avoids expensive checks on transitions between
application and kernel code can be up to 83% for a getppid;
suggesting that optimizing the transition between application
code may have a significant performance impact.

5.3.2 Large requests. Figure 2 contrasts the performance
of Linux to UKL and UKL_BYP for read, write, sendto and
recvfrom as we use LEBench [37] microbenchmark to vary
the payload up to 8KB of data. Again, baseline UKL shows

very little improvement over Linux, but UKL_BYP shows a
significant constant improvement. The right vertical axis also
shows the downward trend of percentage improvement of
UKL_BYP compared to Linux. As the time spent in the ker-
nel increases, the percentage gain decreases. But even for
payloads of up to 8KB, the percentage improvement is still
significant, i.e., between 11% and 22%.

It is interesting to contrast our results with those from
the recent Lupine [20] work.> Surprisingly they observed
that just eliminating the system call overhead is significant
(40%) for a null system call, but since they found that (like us)
the improvement dropped to below 5% in most cases, they
concluded that the benefit of co-locating the application and
kernel is minimal. Our results suggest that the major perfor-
mance gain comes not from eliminating the hardware cost but
from eliminating all the checks on the transition between the
application and kernel code and that reducing this overhead
has a significant impact on even expensive system calls.

5.3.3 PageFaulthandling. Figure 3 compares three differ-
ent schemes we have for handing page faults, i.e., UKL_PF_DF,
UKL_PF_SS and (UKL_RET_PF_DF). For UKL_PF_DF, we see
close to 5% improvement in page fault latency compared to
Linux. UKL_PF_SS is also comparable to the previous case,
which means that stack switch on every page fault is not too
costly, and most of the benefit over Linux in both these cases
is due to handling page faults in kernel mode and avoiding
ring transition. (UKL_RET_PF_DF) gives us more than 12.5%
improvement over normal Linux. In all these cases, since the
time taken to service more page faults increases, the improve-
ment over normal Linux also increases, which is why we see a
constant percentage improvement. Unmodified applications
can choose anyone of these options through build time Linux
config options.

We repeated this experiment for non-stack page faults, i.e.,
on mapped memory and got the same results.

5.4 Application performance

We want to see how real world applications perform on UKL.
We chose three different types of applications: a simple ap-
plication (Redis [36]) used by previous works as well [18, 20],
a more complex application (Memcached [29]) that many
unikernels don’t support unmodified, and a latency-sensitive
application (Secrecy [22]). Our results show significant ad-
vantages in Redis (26%), Memcached (8%), and Secrecy (100x).

5.4.1 Simple Application: Redis. We use Redis, a widely
used in-memory database, to measure the performance of UKL
and its different configurations in real world applications. For
this experiment, we ran Redis server on UKL on bare metal
and ran the client on another physical node in the network.
We use the Memtier benchmark [30] to test Redis. Through

5We have not been able to reproduce their result, but are still working to
generate their kernel on our system.

15.0%

12.5% A — ™
10.0% - —— UKL _PF DF
e UKL _PF_SS
7.5%

—— UKL RET PF DF
5.0% A
° IA\NN‘/"
2.5% A

Improvement over Linux

0.0% T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100
No. of Stack Pagefaults

Figure 3. Percentage improvement in stack page faults over
Linux. UKL which handles problematic page faults on double
fault stack (UKL_PF_DF) and UKL which handles all page
faults on a dedicated stack (UKL_PF_SS) show around 5%
improvement over Linux. UKL_RET_PF_DF is further con-
figured to use ret instead of iret when returning from page
faults, and shows moe than 12.5% improvement over Linux.

Memtier benchmark, we create 300 clients, each sending 100
thousand requests to the server. The ratio of get to set op-
erations in 1 to 10. We ran Redis on Linux, UKL_RET_BYP
and UKL_RET_BYP with deeper shortcuts. Figure 4 helps us
visualize the latency distribution for these requests.

To better understand where the time was being spent, we
profiled Redis UKL with perf. Figure 5, which is part of the
flame graph [12] we generated, shows two clear opportuni-
ties for performance improvement. Blue arrows show how
we could shorten the execution path by bypassing the entry
and exit code for read and write system calls and invoke the
underlying functionality directly. Figure 4 shows how Redis
on UKL_RET shows improvement in average and 99th per-
centile tail latency when it bypasses the entry and exit code
(UKL_RET_BYP). Table 3 shows that UKL_RET_BYP has 11%
better tail latency and 12% better throughput.

Looking at Figure 5 again, the green arrows show that
read and write calls, after all the polymorphism, eventually
translate into tcp_recvmsg and tcp_sendmsg respectively.
To investigate any potential benefit of shortcutting deep into
the kernel, we wrote some code in the kernel to interface read
andwrite with tcp_recvmsgand tcp_sendmsg respectively.
We then modified Redis (10 lines modified) to call our inter-
face functions instead of read and write. Our results show
(Figure 4) further improvement in average and 99th percentile
tail latency i.e., UKL_RET_BYP (shortcut). Table 3 shows that
UKL_RET_BYP (shortcut) has 22% better tail latency and 26%
better throughput.

Figure 4 provides us some nice insights into future possibili-
ties. There is almost a 0.5ms difference in the shortest latencies
for Linux versus UKL_RET_BYP (shortcut) case. This means
that there is an opportunity to further reduce the average and
tail latencies to sit closer to the smallest latency case.

Probablity Density CDF
2.5 I L0
Linux 1 1~
220 I 1 § Lo.8
7 A
g 12 13
A 1.5 |§ |§-0.6LL
Z 15 g a
S 1.0 18 I9+04
< 5 =
2 1z 1€
j | lo\°
A 0.5 202
| |
0.0 ' s ! 1 y IS B
00 05 10 15 20 25 30 35
2.5 I I 1.0
UKL RET BYP | -
(%]
,4? 2.0 I 15 0.8
(2] n (=2}
o I Ia
q_) ~
& 15 E iz fos,
> < g
£ 135 I3 a
3 10 12 15 foa®
5 1.0 g = 0.4
= E 1€
£ =
£ 0.5 | | > Lo.2
| |
0.0 . ! iy 4 L, 0.0
00 05 10 15 20 25 30 35
2.5 I I 1.0
UKL RET BYP ||| | S
'_E’ 2.0 1 (shortcut) i 1E 0.8
a 1g 1S
A 1.5 13 |§ F0.6
Z 15 lg A
= IS) S @)
2 1.0 A | 1- 0.4
3 12 E
) < e
j = X
£ 0.5 | 1 2 Lo.2
| |
0.0 ; ; A ; 1 ; 0.0
00 05 10 15 20 25 30 35

Time Latency (ms)

Figure 4. Latency plots for Redis running on Linux (top),
UKL_RET_BYP (middle) and UKL_RET_BYP with deeper
shortcuts (bottom). The horizontal axis shows latency in
ms. The purple bars show the probability density of all the
requests made to Redis, and the average and 99th percentile
tail latencies are also marked. Right hand vertical axis is for
CDF, and the orange line shows the CDF of the latencies of
all the requests.

Lupine shows slightly better results than baseline Linux
for Redis, but it does so in virtualization on a lightweight hy-
pervisor. It would be interesting to see how UKL performs in
that setting, even though there is a huge difference in kernel
versions used by Lupine and UKL.

5.4.2 Complex Application: Memcached. Memcached
is a multithreaded workload that relies heavily on pthreads

10

99% tail % t-put | t-put%
System tail(ms) | improv. | (Kb/s) | improv.
Linux 3.26 - 6375.20 -
UKL_RET_BYP 2.91 11% 7154.68 12%
UKL_RET_BYP 2.54 22% 8022.54 26%
(shortcut)

Table 3. Redis Throughput and Latency:

library and glibc ’s internal synchronization mechanisms.
It is an interesting application because unikernels generally
don’t support complex applications, and systems like EbbRT
[39] first have to port Memcached. To evaluate Memcached,
we use the Mutilate benchmark [5]. This benchmark uses mul-
tiple clients to generate a fixed queries-per-second load on
the server and then measures the latency. We ran the clients
in userspace on the same node as Memcached UKL to re-
move any network delays, and we pinned the Memcached
server and clients to separate cores. We used Mutilate to gen-
erate queries based on Facebook’s workloads [5]. For differ-
ent configurations of UKL, we measured how many queries
per second Memecached can serve while keeping the 99%
tail latency under the 500 us service level agreement. Fig-
ure 6 shows Memcached with UKL_RET performs similar to
Memcached on Linux, i.e., both serve around 73 thousand
queries before exceeding the 500 us threshold. Memcached on
UKL_RET_BYP can serve around 77 thousand queries (around
5% improvement), and Memcached on UKL_RET_BYP (short-
cut) can serve up to 79 thousand queries (around 8% improve-
ment) before going over the 500 us threshold.

This experiment also serves as a functionality and compat-
ibility result; a comparatively large application with multiple
threads etc. can run on UKL.

5.4.3 Latency Sensitive Application: Secrecy. Secrecy
[?]is a multi-party computation framework for secure analyt-
ics on private data. While Redis and Memcached are through-
put sensitive, Secrecy is latency-sensitive. This represents
an important class of applications, e.g., highspeed financial
trading, etc. Secrecy is a three node protocol with each node
sending data to its successor and receiving from its predeces-
sor with the third node sending to the first. Computation is
done row by row with a round of messages thatact as a barrier
between each row.

We used a test in the Secrecy implementation for a GROUP-
BY operator which groups rows in a table by key attributes
and counts the number of rows per group. Messages used in
a round of communication are each very small, between 8
and 24 bytes each, so we configured each TCP socket to use
TCP_NODELAY to avoid stalls caused by congestion control.
Using this test executable, we ran experiments with 100, 1000,
and 10,000 input rows and measured the time required to

Figure 5. Part of a flame graph generated after profiling Redis-UKL base model with perf. The read and write functions at
the bottom reside in Redis code. Blue arrows show the code bypassed in UKL_BYP, and green arrows show deeper shortcuts

i.e., calling deep inside the kernel directly from Redis code.

1000
—— Linux
—— UKL RET
8001 __ ykwL ReT BYP
@ —— UKL_RET BYP (shortcut)
2 600 -
>
[N S S e ——p - (] Ty RS S ——
g 500us SLA
2400 A
—
200 A

70000 75000 80000

Querries per Second

60000 65000 85000

Figure 6. 99% tail latency for Memcached against increasing
queries per second. A 500 us SLA is also shown to marked for
reference. Memcached built with Linux and UKL_RET can
handle similar rate of queries while staying under the 500
us tail latency. UKL_RET_BYP and UKL_RET_BYP (shortcut)
can handle higher rate of queries at the same tail latency.

complete the GROUP-BY. Each system and row size combi-
nation was run 20 times, and the worst two runs for each
combination were discarded.

Figure 7 shows the run times of the three systems normal-
ized to the run time of Linux and the error bars show the
coefficient of variation for each configuration. As with other
experiments, the UKL_BYP configuration shows a modest
improvement in run time. However, when we use the deeper
shortcut to the TCP send and receive functions, we see signif-
icant (100x) runtime improvements.

The improvement of the shortcut system over the others
was larger than anticipated, so we reran the experiments and
achieved the same level of performance. To verify that the
work was still happening, we collected a capture of all the
inter-node traffic using Wireshark and verified that the same
number of TCP packets traveled between nodes in all three
system setups for a 100 row experiment. We also instrumented
the send and receive paths in Secrecy to collect individual
times for send and receive calls in each system for a 100 row

11

1.0

B Linux B@W UKL _BYP BB UKL _RET + Shortcut

0.8 1
0.6 1

0.4 1

Runtime normalized to Linux

1000
Input size in rows

10000

Figure 7. Normalized means of the run time of a secrecy
group-by operator with increasing row counts. The run
time improvements of the UKL_BYP system were larger
than in other systems, however, the shortcut system shows a
dramatic reduction in run time. Also of note is the reduction
of the variation between runs, both UKL_BYP and UKL_RET
+ shortcut showed significantly smaller standard deviations
with respect to their means.

run. The mean and standard deviation of send times for Linux
were 2.23us and 1.14us, respectively, and the values for receive
times on Linux were 1,100us and 3,300us, respectively. The
shortcut showed send mean and standard deviation of 896ns
and 1,755ns, which is a significant speed up, but the receive
numbers were 638ns and 3,388ns.

Itappears that, with the shortcut, the system isnever having
to wait on packet delivery on top of bypassing system call en-
try and exit paths, so the shortcut system is never put to sleep
waiting on incoming messages. We believe that because Se-
crecy is latency-sensitive and because we accelerate the send
path, we ensure that no node ever has to wait for data and can
move to the next round of processing immediately. Moreover,
the shortcut implicitly disables scheduling on transitions, en-
suring that the application is always run to completion. This
is critical for an application with frequent barriers.

6 Related Work

There has been a huge body of research on unikernels that we
categorize as clean slate designs, forks of existing operating
systems, and incremental systems.

Clean Slate Unikernels: Many unikernel projects are writ-
ten from scratch or use a minimal kernel like MiniOS [6] for
bootstrapping. These projects have complete control over the
language and methodology used to construct the kernel. Mi-
rageOS [24] uses OCaml to implement the unikernel and uses
the language and compiler level features to ensure robustness
against vulnerabilities and small attack surface. Similarly, OSv
[16] useslock-free scheduling algorithms to gain performance
benefits for unmodified applications. Implementations in
clean-slate unikernels can also be fine-tuned for performance
of specific applications, e.g., Minicache optimizes Xen and
MiniOS for CDN based use case [19]. Further, from scratch im-
plementations can easily expose efficient, low-level interfaces
to applications e.g., EbbRT [39]. Different clean slate uniker-
nels can often be polar opposites in some regards, exposing
the wide range of choices available to them. For instance, some
might target custom APIs for performance [24, 39] while like
HermiTux [33] target full Linux ABI compatibility. Recently,
efforts like Unikraft [18] provide strong POSIX support while
also allowing custom APIs for further performance gains.

These unikernel offer compelling trade-offs to general-
purpose operating systems. These include improved security
and smaller attack surfaces e.g., Xax [10] and MirageOS [24],
shorter boot times e.g., ClickOS [27] and LightVM [26], ef-
ficient memory use through single address space e.g., OSv
[16] and many others, and better run-time performance e.g.,
EbbRT [39], Unikraft [18] and SUESS [8]. Some approaches
target direct access to virtual or physical hardware [39]. A
number of researchers have directly confronted the problem
of compatibility, e.g., OSv [16] is almost Linux ABI compatible
and HermiTux is fully ABI compatible with Linux binaries
[33]. Other projects aim to make building unikernels easier
e.g., EbbRT [39], Libra [3] and Unikraft [18].

The UKL effort was inspired by the tremendous results
demonstrated by clean slate unikernels. Our research targets
trying to find ways to integrate some of the advantages these
systems have shown into a general-purpose OS.

Forks of General Purpose OS. A number of projects ei-
ther fork an existing general-purpose OS code base or reuse a
significant portion of one. Examples include Drawbridge [34]
which harvests code from Windows, Rump kernel [15] which
uses NetBSD drivers and Linux Kernel Library (LKL) [35]
which borrows code from Linux. These systems, although
constrained by the design and structure of the original OS,
generally have better compatibility with existing applications
[34]. The codebase these systems fork are well tested [35] and
can serve as building blocks for other research projects, e.g.,
Rump [15] has been used in other projects [32].

12

Our goal in UKL is to try to find a way to integrate unikernel
optimizations without having the fork the original OS.

Incremental Systems. There are systems, e.g., Kernel Mode
Linux (KML) [25], Lupine [20] and X-Containers [40] which
use an existing general-purpose operating system (Linux) but
make comparatively fewer changes. This way, a lot of working
knowledge of users of Linux can easily transfer over to these
systems, but in doing so, these systems only expose the system
call entry points to applications and don’t make any further
specializations. Unlike UKL, they don’t co-optimize the ap-
plication and kernel together. Lupine [20] and X-Containers
[40] demonstrate opportunities in customizing Linux through
build time configurations, and that is orthogonal and com-
plementary to UKL. UKL can also benefit from a customized
Linux and then add unikernel optimizations on top of that.

7 Concluding remarks

UKL creates a unikernel target of glibc and the Linux kernel.
The changes are modest, and we have shown even with these,
it is possible to achieve substantial performance advantages
for real workloads, e.g., 26% improvement in Redis throughput
while improving tail latency by 22%. UKL supports both vir-
tualized platforms and bare-metal platforms. While we have
not tested a wide range of devices, we have so far experienced
no issues using any device that Linux supports. Operators can
configure and control UKL using the same tools they are famil-
iar with, and developers have the ability to use standard Linux
kernel tools like BPF and perf to analyze their programs.

UKL differs in a number of interesting ways from uniker-
nels. First, while application and kernel code are statically
linked together, UKL provides very different execution envi-
ronments for each; enabling applications to run in UKL with
no modifications while minimizing changes to the invariants
(whatever they are) that the kernel code expects. Second, UKL
enables a knowledgable developer to incrementally optimize
performance by modifying the application to directly take
advantage of kernel capabilities, violating the normal assump-
tions of kernel versus application code. Third, processes can
run on top of UKL, enabling the entire ecosystem of Linux
tools and scripting to just work.

We have repeatedly thought that we were only a few weeks
away from a stable system, and it has only been recently that
we had a design and a set of changes that met our fundamental
goals. While the set of changes to create UKL ended up being
very small, it has taken us several years of work to get to this
point. The unique design decisions are a result of multiple, typ-
ically much more pervasive, changes to Linux as we changed
directions and gained experience with how the capability we
wanted could be integrated into Linux. It is in some sense an
interesting experience that the very modularity of Linux that
enables a broad community to participate both: 1) makes it
very difficult to understand how to integrate a change like

UKL and, 2) can be harnessed to enable the change in a very
small number of lines of code.

The focus of our work so far has been on functionality and
just a proof of concept of a performance advantage in order
to justify integrating the code into Linux. Now that we have
achieved that, we plan to start working on getting UKL up-
streamed as a standard target of Linux so that the community
will continue to enhance it.

We have only started performance optimizing UKL. As our
knowledge of Linux has increased, a whole series of simple op-
timizations that can be readily adopted have become apparent
beyond the current efforts. How hard will it be to introduce
and/or exploit zero-copy interfaces to the application? How
hard will it be to reduce some of the privacy assumptions im-
plicit in the BSD socket interface when only one application
consumes incoming data?

These kernel-centric optimizations are just the start. From
an application perspective, we believe that UKL will provide
a natural path for improving performance and reducing the
complexity of complex concurrent workloads. Concurrent
operations on shared resources must be regulated. Often the
burden falls onto the user code. From the user-level, it is hard
to determine whether synchronization is needed, and the con-
trolling operations and controlled entities usually live in the
kernel. If the user code moves into the kernel and has the same
privileges, some operations might become faster or possible
in the first place. For instance, in a garbage collector, it might
be necessary to prevent or at least detect whether concurrent
accesses happen. With easy and fast access to the memory
infrastructure (e.g., page tables) and the scheduler, many sit-
uations in which explicit, slow synchronization is needed
might get away with detecting and cleaning up violations of
the assumptions.

If the Linux community accepts UKL, we believe it will not
only impact Linux but may become a very important plat-
form for future research. While the benefits to researchers of
broad applications on HCL support are obvious. Perhaps less
obvious, as unikernel researchers, is the ability to use tools
like ktest to deploy and manage experiments, BPF and perf
to be able to understand performance, have been incredibly
valuable.

References

[1] Dpdk - data plane development kit. https://www.dpdk.org/. Accessed
on 2021-10-7.

[2] Storage Performance Development Kit.
(Accessed on 01/16/2019).

[3] Glenn Ammons, Jonathan Appavoo, Maria Butrico, Dilma Da Silva,

David Grove, Kiyokuni Kawachiya, Orran Krieger, Bryan Rosenburg,

Eric Van Hensbergen, and Robert W Wisniewski. Libra: a library

operating system for a jvm in a virtualized execution environment.

In Proceedings of the 3rd international conference on Virtual execution

environments, pages 44-54, 2007.

Thomas E Anderson. The case for application-specific operating systems.

University of California, Berkeley, Computer Science Division, 1993.

https://spdk.io/, 2018.

—
S
fla?

13

[5] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike
Paleczny. Workload analysis of a large-scale key-value store. In
Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE joint
international conference on Measurement and Modeling of Computer
Systems, pages 53-64, 2012.
Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen
and the art of virtualization. ACM SIGOPS operating systems review,
37(5):164-177, 2003.
[7] Scott Beamer, Krste Asanovic, and David A. Patterson. The GAP
benchmark suite. CoRR, abs/1508.03619, 2015.
[8] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger,
and Jonathan Appavoo. Seuss: skip redundant paths to make serverless
fast. In Proceedings of the Fifteenth European Conference on Computer
Systems, pages 1-15, 2020.
David R Cheriton and Kenneth J Duda. A caching model of operating
system kernel functionality. ACM SIGOPS Operating Systems Review,
29(1):83-86, 1995.
[10] John R Douceur, Jeremy Elson, Jon Howell, and Jacob R Lorch.
Leveraging legacy code to deploy desktop applications on the web. In
OSDI, volume 8, pages 339-354, 2008.
Dawson R Engler, M Frans Kaashoek, and James O’Toole Jr. Exokernel:
An operating system architecture for application-level resource man-
agement. ACM SIGOPS Operating Systems Review, 29(5):251-266, 1995.
Brendan Gregg. The flame graph. Commun. ACM, 59(6):48-57, may
2016.
[13] Intel. https://www.dpdk.org/,2010. [Online; accessed 17-January-2019].
[14] AnttiKantee. The design and implementation of the anykernel and rump
kernels. 2nd edition, 2016.
[15] Antti Kantee et al. Flexible operating system internals: the design and
implementation of the anykernel and rump kernels. 2012.
Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El, Don
Marti, and Vlad Zolotarov. Osv—optimizing the operating system
for virtual machines. In 2014 {USENIX} Annual Technical Conference
({USENIX}{ATC} 14), pages 61-72,2014.
Ricardo Koller and Dan Williams. Will Serverless End the Dominance
of Linux in the Cloud? In Proceedings of the 16th Workshop on Hot
Topics in Operating Systems, pages 169-173. ACM, 2017.
Simon Kuenzer, Vlad-Andrei Badoiu, Hugo Lefeuvre, Sharan San-
thanam, Alexander Jung, Gaulthier Gain, Cyril Soldani, Costin Lupu,
Stefan Teodorescu, Costi Rdducanu, et al. Unikraft: fast, specialized
unikernels the easy way. In Proceedings of the Sixteenth European
Conference on Computer Systems, pages 376-394, 2021.
Simon Kuenzer, Anton Ivanov, Filipe Manco, Jose Mendes, Yuri
Volchkov, Florian Schmidt, Kenichi Yasukata, Michio Honda, and Felipe
Huici. Unikernels everywhere: The case for elastic cdns. In Proceedings
of the 13th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, pages 15-29, 2017.
Hsuan-Chi Kuo, Dan Williams, Ricardo Koller, and Sibin Mohan. A
linux in unikernel clothing. In Proceedings of the Fifteenth European
Conference on Computer Systems, pages 1-15, 2020.
Ian M. Leslie, Derek McAuley, Richard Black, Timothy Roscoe, Paul
Barham, David Evers, Robin Fairbairns, and Eoin Hyden. The design
and implementation of an operating system to support distributed mul-
timedia applications. IEEE journal on selected areas in communications,
14(7):1280-1297, 1996.
[22] John Liagouris, Vasiliki Kalavri, Muhammad Faisal, and Mayank Varia.
Secrecy: Secure collaborative analytics on secret-shared data. CoRR,
abs/2102.010438, 2021.
Linux Weekly News. https://lwn.net/, note = "(Accessed on 05/30/2022)".
Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David
Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand,
and Jon Crowcroft. Unikernels: Library operating systems for the cloud.
ACM SIGARCH Computer Architecture News, 41(1):461-472, 2013.

[6

—

[9

—

[11]

[12]

[16]

[17]

(18]

[19]

[20]

[21]

[23]
[24]

https://www.dpdk.org/
https://spdk.io/
https://www.dpdk.org/
https://lwn.net/

[25]

[26]

[27]

(28]

[29]
(30

[t

Toshiyuki Maeda and Akinori Yonezawa. Kernel mode linux: Toward
an operating system protected by a type theory. In Annual Asian
Computing Science Conference, pages 3—17. Springer, 2003.

Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon
Kuenzer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici.
My vm is lighter (and safer) than your container. In Proceedings of the
26th Symposium on Operating Systems Principles, pages 218-233, 2017.
Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu,
Michio Honda, Roberto Bifulco, and Felipe Huici. Clickos and the
art of network function virtualization. In 11th {USENIX} symposium
on networked systems design and implementation ({NSDI} 14), pages
459-473, 2014.

Paul E McKenney and John D Slingwine. Read-copy update: Using
execution history to solve concurrency problems. In Parallel and
Distributed Computing and Systems, volume 509518, 1998.
Memcached. https://memcached.org/. (Accessed on 05/30/2022).
Memtier Benchmark.

[31] José Moreira, Michael Brutman, José Castanos, Thomas Engelsiepen,

(32]

(33]

(34]

Mark Giampapa, Tom Gooding, Roger Haskin, Todd Inglett, Derek
Lieber, Pat McCarthy, et al. Designing a highly-scalable operating
system: The blue gene/l story. In Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, pages 118—es, 2006.

Ruslan Nikolaev, Mincheol Sung, and Binoy Ravindran. Librettos: a
dynamically adaptable multiserver-library os. In Proceedings of the 16th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, pages 114-128, 2020.

Pierre Olivier, Daniel Chiba, Stefan Lankes, Changwoo Min, and Binoy
Ravindran. A binary-compatible unikernel. In Proceedings of the 15th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, pages 59-73, 2019.

Donald E Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky, and
Galen C Hunt. Rethinking the library os from the top down. In Proceed-
ings of the sixteenth international conference on Architectural support

14

[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

for programming languages and operating systems, pages 291-304, 2011.
Octavian Purdila, Lucian Adrian Grijincu, and Nicolae Tapus. Lkl: The
linux kernel library. In 9th RoEduNet IEEE International Conference,
pages 328-333. IEEE, 2010.

Redis. https://redis.io/, note = "(Accessed on 05/30/2022)".

Xiang Ren, Kirk Rodrigues, Luyuan Chen, Camilo Vega, Michael
Stumm, and Ding Yuan. An analysis of performance evolution of
linux’s core operations. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, pages 554-569, 2019.

Luigi Rizzo. netmap: A novel framework for fast packet i/o. In 2012
USENIX Annual Technical Conference (USENIX ATC 12), pages 101-112,
Boston, MA, June 2012. USENIX Association.

Dan Schatzberg, James Cadden, Han Dong, Orran Krieger, and Jonathan
Appavoo. Ebbrt: A framework for building per-application library
operating systems. In 12th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 16), pages 671-688, 2016.
Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bagdasaryan,
Christina Delimitrou, Robbert Van Renesse, and Hakim Weatherspoon.
X-containers: Breaking down barriers to improve performance and
isolation of cloud-native containers. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 121-135, 2019.

Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. Peeking Behind the Curtains of Serverless Platforms. In
Proceedings of the 2018 USENIX Conference on Usenix Annual Technical
Conference, USENIX ATC 18, pages 133-145, Berkeley, CA, USA, 2018.
USENIX Association.

Dan Williams, Ricardo Koller, Martin Lucina, and Nikhil Prakash.
Unikernels as processes. In Proceedings of the ACM Symposium on
Cloud Computing, pages 199-211, 2018.

https://memcached.org/
https://redis.io/

	Abstract
	1 Introduction
	2 Motivation & Goals
	2.1 Unikernel optimizations
	2.2 Application support
	2.3 Hardware support
	2.4 Ecosystem

	3 Design
	3.1 Base Model
	3.2 Unikernel Optimizations

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Linux application hardware & ecosystem
	5.3 Microbenchmarks
	5.4 Application performance

	6 Related Work
	7 Concluding remarks
	References

